
 

 

 

 

 

 

 

 

 

Deliverable 4.1 

Report on Co-Engineering Process Support 

 

 

 

 

 

This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under 
grant agreement No 737475. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and 
innovation programme and Spain, France, United Kingdom, Austria, Italy, Czech Republic, Germany. 

The author is solely responsible for its content, it does not represent the opinion of the European Community and the 
Community is not responsible for any use that might be made of data appearing therein.  

 

DISSEMINATION LEVEL 

X PU Public 

 CO Confidential, only for members of the consortium (including the Commission Services) 

Ref. Ares(2018)2689570 - 24/05/2018



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 2 

 

COVER AND CONTROL PAGE OF DOCUMENT 

Project Acronym: AQUAS 

Project Full Name: Aggregated Quality Assurance in Systems 

Grant Agreement No.: 737475 

Programme ICT-1: Cyber-Physical-Systems 

Instrument: Research  & innovation action 

Start date of project: 01.05.2017 

Duration: 36 months 

Deliverable No.: D4.1 

Document name: Report on co-engineering process support 

Work Package WP4 

Associated Task Task 4.1 

Nature 1 R 

Dissemination Level 2 PU 

Version: 0.1 

Actual Submission Date: 24-05-2018 

Contractual Submission Date 30-04-2018 

Editor: 
Institution: 
E-mail: 

Christian Fuss / Mario Winkler 
ANSYS medini Technologies AG 
christian.fuss@ansys.com 

mario.winkler@ansys.com 

 

 

 

 

 

 

 
                                                           

1   R=Report, DEC= Websites, patents filling, etc., O=Other  
2   PU=Public, CO=Confidential, only for members of the consortium (including the 
Commission Services) 

mailto:christian.fuss@ansys.com


AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 3 

 

 

 

 

Change Control 

Document History 

Version Date Change History Author(s) Organisation(s) 

0.1 06.09.2017 Initial draft of document 
structure 

C. Fuss AMT 

0.2 18.01.2018 Revised document structure 
and resorted contributions 

C. Fuss AMT 

1.0 24.5.2018 finalized M. Winkler AMT 

 

 

 

 

 

Distribution List 

Date Issue Group 

11.09.2017 0.1 Call for inputs 
design.tooling@aquas-project.eu 

all@aquas-project.eu 

26.04.2018 
0.2 Call for additional inputs and 
modifications 

design.tooling@aquas-project.eu 

all@aquas-project.eu 

24.05.2018 1.0 Final version 
ECSEL JU 

all@aquas-project.eu 

 

  

mailto:design.tooling@aquas-project.eu
mailto:design.tooling@aquas-project.eu


AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 4 

 

Table of Contents 

 

1 Introduction [AMT] ........................................................................................................ 7 

Structure of this Document ........................................................................................................... 7 

2 Process Model ............................................................................................................... 8 

2.1 Meta-Model ................................................................................................................... 8 

2.2 Overview ..................................................................................................................... 10 

Interaction Points .................................................................................................................................. 14 

3 Use Cases ..................................................................................................................... 15 

3.1 UC1 – Air Traffic Management [ISYS] ............................................................................ 15 

3.2 UC2 – Medical Devices [ITI] .......................................................................................... 18 

3.3 UC3 – Rail Carriage System [ClearSy] ............................................................................. 22 

3.4 UC4 – Industrial Drive [AMT] ........................................................................................ 24 

3.4.1 Process Definition .................................................................................................................. 24 

Analysis Phase ....................................................................................................................................... 27 

Realization Phase ................................................................................................................................... 28 

3.4.2 Tasks and Activities ................................................................................................................ 29 

3.4.3 Methods and Tools ................................................................................................................ 30 

3.4.4 Interaction Points ................................................................................................................... 30 

3.5 UC5 – Space Multicore Architecture [TASE] ................................................................... 30 

4 Tools ............................................................................................................................ 33 

4.1 System Modelling and Analysis of Quality Criteria [AMT] .............................................. 33 

4.2 Co-Design and Implementation of Safety and Performance [ITI] .................................... 35 

4.3 Behavioural system analysis for improved SSP [SISW] ................................................... 37 

4.4 Asset and Artefact Management for Co-Engineering [MDS] ........................................... 40 

4.5 Modelling of security requirements and properties, and verification through static code 
analysis 40 

4.6 Modelling and Analysis of Co-Engineering Requirements [Intecs] .................................. 42 

4.7 OPENCERT [tecnalia] .................................................................................................... 44 

4.8 Static and Dynamic Code Analysis in the Co-Engineering Process [BUT] ......................... 46 

4.9 Safety and Security Co-engineering Including Performance [All4Tec] ............................. 48 

4.10 Performance evaluation before implementation [TRT] .................................................. 49 

4.11 Timing behaviour verification for Performance and Safety at early design phases safety 
[TRT] 51 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 5 

 

4.11.1 Time4Sys ................................................................................................................................ 51 

4.11.2 Tempo Verifier ....................................................................................................................... 52 

4.12 Workflow Automation for Multi-Concern Assurance [AIT] ............................................. 54 

4.13 Sub-System Hardening of Communication Protocols [TrustPort] .................................... 58 

5 Conclusion [AMT] ......................................................................................................... 61 

6 References [all] ............................................................................................................ 62 

 

  



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 6 

 

Executive Summary 

This deliverable is the result of AQUAS task 4.1. Its roles towards supporting work in AQUAS are: 

 specifying required functionalities enabling tool support of co-engineering processes 
according to the AQUAS methodology as it is currently understood in respect to the 
requirements, it will be adapted as the project progresses; 

 starting the formalization of the methodology in a tool-based process model by using the 
Software & Systems Process Engineering Meta-Model (SPEM); 

 explaining the adaptations of this methodology for the different use cases; 

 outlining the partner’s tools to support this methodology and especially explaining the 
planned extension to support the analysis of safety, security and performance properties and 
the foreseen interactions amongst the tools.  

  



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 7 

 

1 Introduction [AMT] 

The work documented in this deliverable is based on the methodology on safety, security and 
performance processes that is elaborated in WP3. The AQUAS methodology will emerge from the use 
cases actual processes, as derived from the application of the different standards, from the emerging 
definitions of co-engineering and interaction points and from the application and integration of tools 
to support the different processes.  

This report specifies required functionalities enabling tool support of co-engineering processes 
according to this approach. Functionalities will be described for common and global factors as well as 
their tool-specific implementation. Functionalities comprise tracking process progress, data and 
artefacts, and interactions points where cross-domain and cross disciplinary analyses must be 
executed to realize safety-security-performance analysis, supporting system design space exploration 
and trade-offs. Activities will also address ways for requirements to be linked/transferred to different 
tools allowing the requirement continuities in the safety, security and performance domains. 

In this process, the information that should be collected in the design models for enabling this co-
engineering support will be considered. Beyond models and formats, data repositories and 
management will also be addressed. 

 

Structure of this Document 

This document starts with a description of the tool-based process and methodology description in 
Chapter 2, contributing to Objective O6 to provide a well-defined process with clear descriptions of 
interactions among continuous engineering activities. 

Chapter 3 is structured along the lines of the use cases and describes the actual process planned for 
each use case, with a focus on interaction and tools. Using a formalized model with tools attached to 
tasks and tasks composed to more complex activities, allows to identify reliably all interaction 
between the different technologies and tools, fulfilling Objective O1. 

The tools used in the use case are described with their data models and interfaces available for 
interaction throughout the process are presented in Chapter 4. This clear definition of data models 
and interactions can reduce the unwanted repletion, supporting Objective O7. 

The document closes with a Conclusion and a list of References. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 8 

 

2 Process Model 

One of the core goals of the AQUAS project is to develop a methodology for co-engineering in the 
product life cycle that supports qualitative and especially quantitative techniques for the analysis and 
assessment of safety, security and performance properties, both in separate and integrated ways. 
The main tasks contributing to this goal are carried out within WP3 (see deliverables D3.1). 

To make this methodology accessible and allow reuse of process building blocks, it is planned to 
provide a tool-based process description for co-engineering processes, that enables the definition of 
the individual process including the work products, roles and activities but also allows to define the 
required synchronization among these different processes. This task is carried out within WP4 but is 
based on the outcomes of tasks of WP3 so far. The model shall be maintained and enhanced, as WP3 
progresses. 

The following sections will give an overview on the approach and outline the content. 

2.1 Meta-Model 
The process description is formalized in SPEM (Software & Systems Process Engineering Meta-Model) 
using the tool EPF Composer. The outcome is an EPF model and a generated website describing all 
parts of the process and allowing navigation through the knowledge base. 

This EPF model of the AQUAS methodology is specified as an initial version and is considered as a 
living document. The final definition of the process phases and especially of the interaction points 
will be adopted according to the results that will be developed throughout the AQUAS project within 
the use cases. 

"The Software and Systems Process Engineering Meta-model (SPEM) is a process engineering meta-
model as well as conceptual framework, which can provide the necessary concepts for modeling, 
documenting, presenting, managing, interchanging, and enacting development methods and 
processes. An implementation of this meta-model would be targeted at process engineers, project 
leads, project and program managers who are responsible for maintaining and implementing 
processes for their development organizations or individual projects." [OMG-SPEM] 

The idea of SPEM is to separate reusable method content from the described software processes 
which can be seen in below figure. Because of this the processes that are contained are reusable i.e. 
role, work products, tasks etc. This approach shall be employed for the AQUAS methodology, by 
describing generic content and process patterns, that can be tailored to the specific project. The 
viability of this approach shall be demonstrated by showcasing tailored processes for the AQUAS use 
cases. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 9 

 

 

Figure: Separation of reusable method content, assembly in process patterns and configuration 
[OMG-SPEM] 

As reusable method content, the AQUAS methodology specifies tasks, that are performed by roles. A 
task can have input and output work products. A task can be supported by a guidance, e.g. a tool, 
user manual or a concept. 

 Task. A unit of work a role may be asked to perform. 

 Role. A definition of the behavior and responsibilities of an individual, or a set of individuals 
working together as a team. 

 Work Product. A work product is a content element that represents anything used, 
produced, or modified by a task. 

 Guidance. Guidance describes proven advice for accomplishing a goal. It generalizes all forms 
of content whose primary purpose is to provide explanations about other elements. 
Guidance being itself a content element, it is possible to associate guidance to other 
guidance. 

Furthermore, the AQUAS methodology provides building blocks of the bigger process in the form of 
capability patterns made up of activities, which group task instances. 

 Capability Pattern. A special process that describes a reusable cluster of activity. Capability 
patterns express and communicate process knowledge for a key area of interest such as a 
discipline and can be directly used by practitioners to guide their work. 

 Activity. An activity is something that one or more roles do. It is a breakdown element which 
supports the nesting and logical grouping of related process elements such as descriptors 
(task instances) and sub-activities, thus forming breakdown structures. 

The above building blocks are finally used to provide delivery processes for the use cases as examples 
for tailoring the AQUAS methodology and as proof of concept. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 10 

 

 Delivery Process. A delivery process is a special process describing a complete and integrated 
approach for performing a specific project type. It provides a complete lifecycle model that 
has been detailed by sequencing method content in breakdown structures. 

For publication, all elements in an EPF model must be structured in categories, that build up a tree of 
the knowledge graph of the entities. The following kinds of categories are distinguished in EPF 
Composer: 

 Discipline. A collection of related tasks that define a major 'area of concern'. 

 Domain. An area of knowledge or activity characterized by a family of related values. A 
specific problem category that is characterized by a body of knowledge, activities, and 
behaviours. A hierarchy that groups related work products. 

 Work Product Kinds. Standard category that represents a grouping of related work products 
which, in contrast to domain, is more presentation oriented (like models, specifications, 
plans, and so on). 

 Role Sets. Used to group roles with certain commonalities together. 

 Tools. A standard category used as a container for tool mentors. It can also provide general 
descriptions of the tool and its general capabilities. 

 Custom. Used to categorize content based on user criteria. One important use is for 
constructing views for publication. 

2.2 Overview 
The safety life cycle model of the IEC 61508 standard provides an initial contribution to the definition 
of the AQUAS methodology. The SESAMO project proved that this life cycle model can well be 
extended to further quality criteria, like security or performance. The IEC 61508 life cycle is stage-
based, below figure shows the stages. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 11 

 

 

Figure: Phases of the IEC 61508 life cycle model. [IEC 61508] 

Concept. The goal here is to gain sufficient understanding of the equipment under control (EUC) and 
its environment. 

Overall Scope Definition. In this phase of the safety life-cycle, the boundaries and the relation 
between EUC and EUC control system (ECS) are defined, preliminary hazards are identified and the 
scope of the hazard and risk analysis are defined.  

Hazard and Risk Analysis. Hazards at all reasonably foreseeable circumstances for EUC and ECS are 
determined. 

Overall Safety Requirements. Overall safety function requirements and safety integrity requirements 
are defined. 

Overall Safety Requirements Allocation. Safety functions are allocated to safety-related systems 
(SRS) and other risk reduction measures (ORRM). 

System Safety Requirements Specification. System safety requirements definition (safety function 
requirements and system safety integrity requirements) to reach functional safety. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 12 

 

Safety-Related Systems Realization. Implementation of the SRS according to system safety-, system 
safety function-, and system safety integrity requirements. 

As initial approach to the AQUAS Methodology, the analysis, realization and operation stages defined 
in the IEC 61508 standard have mapped to a number of product life cycle areas as described in the 
following figure: 

 

Figure: Stages of the AQUAS methodology 

 

Requirements, modelling and simulation (or formal analyses) are the pre-development activity areas 
that constitutes the main focus of AQUAS and are expected to support also further activities during 
realization and operation. 

This structure is modelled as Capability Patterns in the EPF model as depicted in the following figure. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 13 

 

 

Figure: Stages modelled in the EPF Composer 

 

Every phase in itself is structured into sub-processes that contain a set of tasks. The following figure 
shows this approach by using the Analysis Phase as an example. 

 

Figure: Sub-processes modelled in the EPF Composer 

 

The sub-processes include: 

Scope Exploration. This is to identify the functions of your system, to identify potential 
malfunctioning behaviour and to explore possible violation scenarios. All these activities are 
modelled as Tasks in the EPF model. 

Hazard and Risk Analysis. Here the malfunctioning behaviour is related to a relevant set of 
operational situations including environmental conditions and operation modes in order to 
determine the criticality of safety violations. Subsequently safety goals have to be derived as top-
level requirements to mitigate the risk. Some aspects of performance must also be taken into 
account, e.g. the violation of real-time conditions. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 14 

 

Threat Analysis. Similar activities as in the Hazard and Risk Analysis are performed in respect to 
security. This includes the identification of potential threats, the determination of their criticality and 
the definition of security objectives that initiates the design to a secure system. The identified 
objectives have to be analysed in respect to their performance implications. 

Requirements Derivation. Starting with the safety goals and the security objectives functional 
requirements for both perspectives are derived. This also includes an interference analysis defined as 
an Interaction Point. 

Interaction Points 

With its focus on co-engineering, the AQUAS methodology pays particular attention to the 
interaction points between the engineering of the different quality aspects, throughout the whole 
process. Deliverable D3.1 motivates the introduction of interaction points and describes them as 
both activity as well as a point in the product life cycle at which it occurs. It includes the exchange of 
information between experts in the different domains (e.g. safety or security). The analysis methods 
applied in that interaction have to be combined in order to assess various measures of interest for 
alternative design options. As a result decisions and recommendations have to be produced by the 
various experts that provide solutions for identified trade-offs between desirable properties. 

Thus in the EPF Model, interaction points are modelled as capability patterns and instantiated in 
delivery processes or other capability patterns as activities. An own discipline called “Interaction 
Points” has been created for collecting all interaction points as reference workflows. The globally 
identified interaction points are outlined within the outline of each phase below.  

 

Figure: Modelling of interaction points as capability patterns and process usage as activities 

The picture above reflects the considerations that were undertaken in the deliverable D3.1 chapter 4. 
Here it is formulated that co-engineering adds a new process step as interactions whereby they can 
be implemented either as reviews and discussions between experts or more formalised by tool 
supported analysis. Therefore, for instance, the interaction point “Safety Requirements 
Consolidation” shown in the figure is defined as a step in the Analysis Phase that requires the 
involved parties to review other quality requirements, to analyse their interference in respect to SSP 
and to update the requirements according to the findings. This approach of defining interaction 
points can and will be applied to other stages in the PLC. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 15 

 

3 Use Cases 

3.1 UC1 – Air Traffic Management [ISYS] 
The AQUAS ATM use case focuses on offering innovative situational awareness services to UAVs 
operating in Very Low Level scenarios (city environments, mountainous terrain or areas covered by 
vegetation). In these cases existing surveillance technologies are often limited due to radio signal 
propagation issues or lack of infrastructure, resulting in air traffic that could remain momentarily or 
permanently hidden for the UAV pilot depending on mission conditions.  

The ATM use case intends to apply alternative communication technologies, such as LTE, to facilitate 
the exchange of surveillance related data among small UAVs in VLL environments, and leverage flight 
information gathered from governmental and trans-national agencies (e.g. Eurocontrol) to enable 
detecting hidden air traffic surrounding UAVs.  

Similar performance targets as those applying to techniques currently in use for air traffic monitoring 
in terms of latency and accuracy are aimed. Fulfilling such requirements while coping at the same 
time with security and safety constraints in embedded computing platforms that are designed for 
small UAVs (thus subject to additional limitations, for example, in terms of battery power 
consumption) is a challenge that would benefit from adopting a co-engineering approach from the 
first development stages. Thus AQUAS methods and tools will be applied to the development of the 
UTM service elements across the major demonstrator components.  

Next figure shows the overall UTM demonstrator architecture with major sub-systems involved and 
communication links among them. 

 

Figure: UTM Use Case Demonstrator Architecture. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 16 

 

Overall, the ATM use case demonstrator consists of an airborne UAV platform, a remote control 
station and a server integrated in the ADS-B (Automatic Dependant Surveillance-Broadcast) ground 
infrastructure. Interaction with two external systems is also planned: the FlightAware ADS-B ground 
infrastructure and Eurocontrol Network Manager Business to Business (NM B2B) services, which will 
be providing information on current aircraft positions and flight plans respectively. 

Tools supporting SSP co-engineering within the AQUAS Product Life Cycle, from requirement 
specification and analysis to system modelling and simulation, implementation and validation will be 
showcased. The following figure summarises the tools applicable at each phase and the expected use 
of outputs among tools participating in the tool chain.  

 

Figure: Preliminary tool chain envisaged to support co-engineering within the ATM use case. 

In particular, TrustPort plans to define a set of security requirements using the SSLDC tool. For 
further evaluation of Security-Performance trade-offs the TTool is being considered (in cooperation 
with Telecom ParisTech). Based on inputs from SSDLC, TTool permits the evaluation of the 
performance in two different scenarios: one with no security and one with security mechanisms. 
Also, the evaluation of different security mechanisms/algorithms/methods could be evaluated. For 
example, without taking into account penalties of the hardware platform. Outputs from the SSDLC 
tool will be integrated in the form of SSP requirements within CHESS and SAN models. 

Then, INTECS proposes the CHESS tool to support the modelling of the ATM UC1 system architecture, 
down to the software level. The CHESS Dependability profile, embedded in the CHESS modelling 
language, can be used to enrich the system and software architecture model with information about 
error model of the system and software components, to finally enable dependability analysis, like the 
failure propagation analysis.  

INTECS plans to investigate the usage of the aforementioned model to automatically feed the 
quantitative analysis proposed by City to support the co-analysis phases. Also we are investigating an 
extension of the CHESS dependability profile for the modelling of security threats; in this regard we 
are collaborating with TrustPort to understand how the information related to security requirements 
derived with the Secure Software Development Life-cycle (SDLC) tool can be used within CHESS.  

Finally INTECS will investigate the decoration of the software architecture components with real time 
constraints, by using the MARTE language features embedded in the CHESS modelling language; in 
this case, the application of the CHESS tool support for schedulability and worst-case end-to-end 
response time analysis enabled by the aforementioned MARTE properties will be also evaluated. 

Still in the design phase, City will use the Mobius software tool (developed by the University of Illinois 
at Urbana-Champaign, USA) to build stochastic activity networks (SAN) model of the ATM use case. 
This model will be used for combined analysis of performance and security.  



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 17 

 

An initial description of a SAN model of the ATM UC is included in Deliverable D2.2.1. The model 
includes a performance sub-model, which captures the effects of a variable load (e.g. due to varied 
number of drones communicating with ground services) on the end-to-end delays in communication 
between drones and the ground services and a sub-model of the impact (i.e. deterioration) of 
different cyber-attacks on communication delays. Upon accurate parameterisation (for which direct 
measurements will be required on a dedicated testbed) the SAN model will allow one to explore a 
wide range of situations with variable load and different attacks.  

The SAN models to be used in the ATM use case will be developed using the Mobius tool on its own. 
No integration is envisaged with other software tools. However the City team, together with the 
INTECS team, intend to study whether the functionality of the dependability plug-in of the CHESS tool 
can be extended so as to make it possible for one to derive directly from the SysML model of the 
ATM UC, defined in CHESS, a stochastic model, which is functionally equivalent to the SAN model(s) 
developed by the City team for the ATM UC. City will assist INTECS with the functional requirements 
for the extension of the dependability plug-in and, in case the plug-in extension is implemented, with 
its validation.  

Additional support for simulation and implementation closer to the target platform will be 
considered in the use case. In this sense, the methodology developed by UNIVAQ involves different 
aspects in AQUAS project and ATM use case. The task-level application model, to be used as input, 
will be provided by UCs, using Model-2Model transformations in order to adapt and extract 
performance metrics into safety scenarios. Connected to the demonstrator platform selection 
(considering Unmanned Aerial Vehicle architecture), UNIVAQ will evaluate and compare 
performance with respect to different processors and HW architecture technologies.  

The HW/SW Co-Design methodology will be supported by external performance analysis tools 
provided by different partners, in order to collect system data used during the Design Space 
Exploration (DSE). Other Non-Functional requirements (e.g. security, power consumptions, fault 
tolerance issues etc.) will be considered in future works. UNIVAQ will also extend its benchmarking 
activities related to PikeOS, to identify possible behavioral anomalies and system vulnerabilities in 
terms of safety and performance constraints (e.g. spatial/timing isolation, scheduling overheads, 
communication bottlenecks etc.). 

For validation purposes, AbsInt will help in assessing the safety and security of the system. AbsInt will 
use its tools Astrée and RuleChecker to analyse the operating system (SYSGO's PikeOS kernel) 
statically for finding violations of certain safety and security principles, or proving the absence of 
such violations. Results of these static analyses can be used as arguments for safety and security in 
the certification process. 

In order to assess the safety of PikeOS, RuleChecker is used to detect or exclude violations of MISRA-
C:2004 and MISRA-C:2012. Security properties are assessed by using RuleChecker to detect or 
exclude violations of CERT, CWE, and “Secure C” (ISO/IEC TS 17961) rules. RuleChecker will for all 
checks be run in combination with Astrée in order to exploit Astrée’s sound semantic analysis of C 
code. Astrée will also be used to statically detect invariant assertions and invariant branching 
conditions. Statically decidable branching conditions can be exploited to increase system 
performance; while detecting invariant assertions yields further insights regarding the system’s 
safety and security.   

BUT will use the ANaConDA tool to strengthen safety properties related with concurrency, in 
particular for the OpenSplice DDS middleware, which is written in C/C++ and uses multithreaded 
environment. Another candidate is sDDS implemented and provided by HSRM partner. 

Finally, AIT will apply its tool model-mutation based test case generation called MoMuT, to the ATM 
use case. The MoMuT family of tools derives test cases from models of the system under test for 
fault-based testing. The tools generate test cases that are guaranteed to detect models that contain 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 18 

 

certain user-selectable, seeded faults. Those tests can be already used during behavior modelling for 
validation and improvement of the model. During test case generation, also the fulfillment of 
component contracts, if available, will be checked. Additionally, robustness and performance tests 
will be provided, to verify that certain components react safely to unexpected inputs and that certain 
performance goals are met with a high probability. 

3.2 UC2 – Medical Devices [ITI] 

 

RGB (UC2 Leader) has developed a blood pressure (BP) and neuromuscular transmission (NMT) 
monitoring device for hospital operating room critical care performance. The system is using very 
innovative technology to support the anaesthesiologist in simultaneously monitoring BP and NMT 
during an operating room procedure. 

In the case of BP control, the system operates by delivering vasoactive drugs with the goal of 
reducing patient´s hypertension, and precisely controlling blood pressure measurements in a patient 
undergoing surgical intervention in the operating room or in post-cardiac surgery in the Intensive 
Care Unit. 

In the case of NMT control, the system will use relaxation drugs at the beginning of the operation, in 

the so-called induction phase, and will make sure that the patient is at the required relaxation level 

all along the operation, either in moderate, deep or intense blockade level; Then a second drug will 

be used in the recovery stage at the end of the operation.  

From a technical architecture view point, the Medical demonstrator is composed of the Hardware in 

the Loop benchmarking system, on one side, and the test environment, based on PC software, on the 

other, as depicted in the figure below. The Medical demonstrator is a combination of the Medical use 

case with established and novel methodology and tooling provided by the use case partners. 

 

Figure: System Engineering Environment 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 19 

 

 
The Hardware in the Loop prototype (HiL) will model selected parts of the real-world demonstrator 
with the goal to evaluate tools and methodology that enable the evaluation of safety, security and 
performance implementation attributes throughout the product life-cycle. 

 The basic idea for the technical part of the AQUAS Medical Devices Use Case demonstrator is to 

virtualize a real-world (physical) demonstrator where the patient is replaced by a mathematical 

model that behaves as a human. In practice it is a transfer function that relates as output the 

changes of the physiological parameter under control, having as input the specific drug(s) infusion(s) 

value(s). The blood pressure controller in the picture also includes the NIBP and NMT monitors, so 

that in practice, together with the Infusion Pump Tree, these are the two Medical Devices that will 

eventually be linked and used in the Medical practice 

Physical Demonstrator: The objective will be to provide an environment to be used for the Functional 

Verification of the system allowing with some limitations: 

 Automatic execution of the Test Plans.  

 Increase Requirement Traceability incorporating tools into the development process. 

 Accelerate design by using tools to analyze the performance of different potential 

architectures. 

 Increase the safety of the patient by using Hardware in the Loop System to verify the 

functionality of the Controller before Clinical Validation. 

To implement these objectives, ITI is developing a Quality Management (QM) module for the 

Art2kitekt (A2K) software suite.  This will act as a tool to support co-engineering tasks. The 

architecture of the system is shown below. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 20 

 

 

Figure: Architecture of the System 

This architecture will act as a harness which will manage inputs to and outputs from the various 
hardware components of the demonstrator system. It will compare the measured test results to 
those expected and provide reports. It will also manage the relation between real and expected 
results in terms of the constraints provided by the various tools used during the design, 
implementation and test procedures. 

The tools, procedures and workflows that we intend to integrate within the A2K QM are as follows: 

 

ALL4TEC proposes a Safety and Security co-engineering method based on Safety Architect and Cyber 
Architect tools, as presented in Section 4.9. The proposed method supports risk management inside 
product life cycles (requirement or modelling phases) and across these two phases. If system 
requirements or architecture models are created in partner tools based on SysML/UML model, the 
resulting SysML/UML models could be imported in Safety Architect for classical safety analysis, 
RRA002 (FMEA/FMECA tables that enables tabular linking of safety requirements to safety barriers 
that symbolizes modelling elements to reduce the failure propagation at system component outputs) 
or in Cyber Architect for Security risk analysis, RRA003 (vulnerabilities and threats modelling in 
tabular form with the possibility of defining dependencies). Based on the analysis results, the system 
architecture solution could be confirmed or rejected with the need for re-design or enhancements 
across product life cycles. 

 

 

AMT will create a SysML model using medini analyze, that will allow safety and security analysis. 
Applicable risk analysis methods will be applied. The model might be imported into the other SysML 
tools. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 21 

 

 
City - main planned contribution concerns analysis of system requirements/specs TrustPort’s 
contribution in AQUAS Medical use case can be security requirement definitions like sensitive data 
misuse, data confidentiality, integrity, availability, non-repudiation and quality of service. From the 
viewpoint of human factors, addressing requirements of e.g. IEC 60601-1-10, specifically about 
safety/security implications of: mental model the operators have of the device; cases in which the 
operator must intervene (clauses 5.1, 6.1. Also relevant: EN62366-1, “use error”-related 
clauses).  The main novel aspect of this is analysis of safety concerns regarding operator intervention 
scenarios. 

In addition, we expect to possibly contribute to: 

 threat analysis from the combined safety/security viewpoints, especially regarding human 

contributions, as part of early interaction points; 

 specification of the test plan such that an argument, possibly statistical (cf. D2.1.2) can be 

derived as to how the test demonstrates that the software is properly verified (matches 

specification) and/or validated (fit for purpose and safe). 

Last, the City team will contribute to the planning of interaction points and study of their 
effectiveness, according to its role in WP3. 

 

CEA – wish to use a combination of Papyrus modeler and Frama-C static code analyser to apply a 
model-based software/security co-engineering method for security properties verification. The 
method is described in Section Error! Reference source not found.. In particular CEA will use Papyrus 
or the software architecture modelling, and the security requirements and refined properties 
modelling. Modelled elements will be traced and related with Papyrus traceability tools. Papyrus will 
also be used to generate code for the software architecture, with ACSL annotations representing 
modelled properties. Such ACSL annotations can be either directly generated, if properties are 
directly modelled, or inferred from higher-level requirements that are modelled and refined. 

 

BUT - will contribute in modelling and simulation of the whole patient-in-the loop system. BUT will 
design and implement a complex simulation framework covering the control mechanism, drug 
injection pump, model of the patient and measurement device (blood pressure, neuromuscular 
relaxation etc). These parts of the framework will be modular and allowing to plug in real technical 
components. The goal is to experiment with various types of new drugs, control mechanisms and 
safety issues (robustness of the control mechanism in cases of malfunction of the pump or 
measurement device). BUT will also consider possibilities of analysing resilience of the control 
mechanism against errors, including errors in the input measurements. Apart from that BUT will offer 
its experience and tools analysis of various aspects of the use case code, including, e.g., concurrency 
aspects, memory safety aspects, and/or performance-related aspects. Finally, BUT will leverage its 
experience in computer security and, in collaboration with TrustPort, help evaluating security 
features of the proposed solution. 

 

Tecnalia - The main contribution is to analyse the use case and to develop an assurance case by using 
OpenCert tool. We will include co-engineering factors to the safety cases and it will be used through 
the lifecycle. The assurance case provided by RGB will be modelled, considering, the safety, security 
and performance requirements requested by the standards use case. The assurance case model must 
ensure the co-engineering factors are shared among the different phases of the lifecycle. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 22 

 

 

TrustPort - In the Medical Use Case TrustPort is planning to contribute to analysis of security 
requirements and specifications according to norm ISO11073, OWASP and best practices and offering 
inputs into modelling of security requirements in SysML language in conjunction with other tools like 
CHESS, with help of SSLDC Tool.  

In addition, TrustPort plan to contribute to threat analysis from the combined security/performance 
viewpoints, including human contributions in design, modelling and verification of product life cycle. 

TrustPort’s contribution in AQUAS Medical use case can be security requirement definitions like 
sensitive data misuse, data confidentiality, integrity, availability, non-repudiation and quality of 
service. 

 

3.3 UC3 – Rail Carriage System [ClearSy] 
As described in WP2 D2.2, Clearsy expects advances in security, safety and performance analysis 
through new processes and methods applies to the COPPILOT metro doors control system. This 
system must achieve high safety and performance constraints. Basically, the screening doors should 
open when a train is stopped at the right position on the platform and its doors are opening, and the 
screening doors should close when a train is stopped at the right position on the platform and its 
doors are closing. 

The COPILOT system design approach mainly rely on formal methods cascading to code generation 
(development), testing, commissioning and exploitation (return or experience as inputs to system 
improvement). 

 

Figure: Overview of the COPILOT platform 

 

Design and analysis tools chalenges are first to ensure always faster and safer controllers but also to 
bridge domains with system level  and consider systems interactions. As illustrated below (only for 
the ground sensing part), the COPILOT system dynamically interacts with many other systems (rolling 
stock, other ground systems, sensing…) of sometime variable configurations, leading to adress 
relatively high operation complexity, which must be captured by tools and not only considered as 
boundary conditions. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 23 

 

     

Figure: COPILOT interaction with train 

                                   

                            

Figure: Train dynamics and bus signals                             Figure: Doors openning State machine  

So, the tooling challenge will be to improve state of the art approaches used by Clearsy, ranging from 
the embedded software development to etended virtual system SSP validation. 

 

BUT will investigate new tools interactions to automatically analyse selected critical safety and 
performance code features and checking the absence of critical code errors whenever new code is 
introduced or changes are required after an interaction point.  

It will be achieved through  

 static analyses with tools like Predator, 2LS, or Ranger/Loopus using the approaches of 
abstract interpretation, (bounded) model checking, and SAT/SMT solving. 

 dynamic analyses with tools like ANaConDA and Perun use extrapolating dynamic analysis, 
noise injection, and statistical analysis.  

The BUT tools (Predator/Forester/2LS, ANaConDA, Ranger/Loopus and Perun) and their planned 
extensions will stay generic but with a stress on modularity and efficiency needed at interaction 
points, and they will be particularly optimized and validated for the use case. 

 

CEA activities will investigate specifications translation from B0 into ACSL specifications analyses of 
security properties through static code analysis (WP plug-in of Frama-C tool) and relate static code 
analysis to system/software models. CEA aims too achieving tool cooperation by import/export of 
models in Papyrus UML/SysML and new properties modelled as annotations in Papyrus UML/SysML 
model and code generated (with annotations) for static code analysis. CEA aims also at developing 
collaboration with MTTP on SysMLSec integration and partner tools involved in CHESS to promote 
interoperability through Papyrus. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 24 

 

MTTP will explore the use of the SysML-Sec approach (supported by the free and open source toolkit 
“TTool”) in order to verify the security (and safety, and performance) requirements on the system. 
The analysis will be performed on the HW/SW partitioning stages of SysML-Sec. More specifically, 
MPPT will identify security and safety requirements, identify and model attack trees, model the 
functional and architectural view of the system to finally propose and evaluate system safety and 
security requirements. 

 

SISW will contribute to the behavioural/time-domain system analysis investigations to extend SSP 
analyses practices. These analyses will involve various tools interactions (controls runtimes, physical 
models, requirements…) at different stages of the product life cycle (development an operations) 
and will involve techniques like time domain system simulation combined with SSP requirements. 
Along with the use case leader, these investigations should achieve better knowledge on how 
complex CPS design practices could be improved to achieve higher SSP. Tools interactions will be 
investigated using as possible standard interfaces like FMI, Sfunction or any other relevant interfaces. 

 

Trustport aims at investigating the transformation and interactions of security and safety 
requirements created from security standards, norms and best-practices to use-case PLC tools and 
provide final set of security requirements to compliance process. Trusport aims at developing 
collaboration with BUT regarding test scenario definitions. 

 

3.4 UC4 – Industrial Drive [AMT] 
In UC4 a virtual HW prototype of an industrial drives system will be created that shall be used to 
verify performance constraints together with safety and security requirements for a representative 
set of scenarios. The scenario considers the development phases concept, design, development and 
validation. Operation and retirement phases are not in the scope of this use case. See deliverable 
D2.1.4 for a detailed description of this use case. D2.2.4 provides details on the architectural and 
processual requirements. 

The following sections describe the process followed by the use case with a focus on the tools and 
their interaction from the perspective of co-engineering the three quality aspects safety, security and 
performance. 

3.4.1 Process Definition 

The SAG system development generally adheres to standards IEC 61508 for functional safety and 
derived standard IEC 61800 (Adjustable speed electrical power drive systems). The process defined 
within AQUAS must be compatible to the latter standard. Additionally, it should follow the security 
guidelines for the industrial domain set out by the international standard IEC 6244300 to provide a 
solution that is secure-by-design. 

To ease the evaluation of co-engineering, the approach in UC4 is to limit the scope of a full-blown 
product life cycle to a subset and later integrate successful results into the full product life cycle. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 25 

 

 

Figure: Overall life-cycle of UC4 

The above figure depicts the overall life-cycle method with additional tracks indicating safety, 
security and performance standards and guidelines. It serves as base life-cycle for the industrial 
drives use case demonstrator. 

Below diagram breaks the product life cycle down into activities from the different development 
disciplines and maps them to the tools from the AQUAS partners that are applied in this use case. 
The central data for interaction throughout the use case is a system model in SysML that is 
annotated with quality attributes and a requirements model for safety, security and performance 
requirements. These models are initially created and maintained in medini analyze and can be 
exported to other tools, e.g. INTEC’s CHESS tool, which can provide additional supportive quality 
criteria for balancing the architecture. The results of functional safety analysis lead to the addition of 
safety functions in the design, and additional design requirements, which can be traced with medini 
analyze in each product life-cycle phase.  

It is desirable to enhance the current flow with features that enable a balancing of safety, security 
and performance. The more detail is provided to the balancing mechanisms (e.g. implementation-, 
timing-, area-costs of safety functions) the higher is the accuracy for hitting the optimally balanced 
architecture for all quality aspects. 

S
a
fe

ty S
ta

n
d
a
rd

s a
n
d
 G

u
id

e
lin

e
s

S
e
cu

rity S
ta

n
d
a
rd

s a
n
d
 G

u
id

e
lin

e
s

P
e
rfo

rm
a
n
ce

 S
ta

n
d
a
rd

s a
n
d
 G

u
id

e
lin

e
s

Implementation

Test results

Validation result

Safety and Security

Validation

Development

Functional Safety

and Security Concept

Concept Phase

Technical Safety and 

Security Concept

System Design

Integration

and

Testing



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 26 

 

 

Figure: Activities of the UC4 product life cycle mapped to AQUAS partners’ tools 

As mentioned above, UC4 limits its scope to the following activities and their interaction in the 
product life cycle. 

System Modelling: The methodology elaborated in SESAMO shall be enhanced with performance 
considerations in early stages. medini analyze is used to relate selected security and safety 
mechanisms to requirements. CHESS is used for timing analysis. Particularly, the CHESS tool can be 
extended with code generation features and WCRT (worst-case response time) analysis capabilities. 

Safety-Security Analysis: Evaluate applicability of the FMVEA (Failure Mode Vulnerability and Effects 
Analysis) for combined safety and security analysis and compare it to other suitable approaches (e.g. 
SESAMO’s Security FMEA). 

Safety-Performance Analysis: Evaluate feasibility for time-domain behavioral analysis of the 
combined virtual controller and the virtual physical system. 

Virtual Prototyping: Support the verification of safety features and other quality aspects. Implement 
a seamless flow from System Level Model to the Virtual HW Prototype. Provide a platform that 
allows direct comparative analysis of Virtual Prototype vs. FPGA approach and combined controls 
models and virtual physical environment as well as combined virtual platform and virtual physical 
environment. 

Certification Support: WEFACT as framework for supporting a general assurance case covering all 
relevant dependability attributes (safety, security and performance). 

The product life cycle of UC4 maps to the analysis and realization phase of the AQUAS methodology, 
the operational phase is not in the scope of this use case. The UC4 product life cycle has been 
modelled using the process building blocks from the AQUAS methodology (see section 2) as delivery 
process in the EPF model using EPF Composer. The following sections describe important aspects of 
the delivery process and the deviations from the AQUAS methodology. For a more detailed 
description and navigability between the process artefacts, please refer the additionally delivered 
EPF model and generated process website. 

Virtual Prototyping Support

Concept Design Development
Verification&
Validation

Safety/Security/Performance Analysis

Certification Support

System Modeling

TrustPort CITYAIT

tools: FMVEA 

methods: Security 
analysis assessment 
of product design 
(SSDLC)

methods: 
Safety/Security/Per
formance trade-off 
analysis
(SAN with tools 
such as Mobius)

AIT

tools: WEFACT

Intecs

tools: CHESS

AMT

tools: Medini

SISW

tools: Amesim

MDS

tools: MVP (ISDD)

MTTP
tools: SysML-Sec 
environment / 
TTool



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 27 

 

Analysis Phase 

The analysis phase of UC4 is separated into a concept and a design phase. 

The goal of the Concept Phase is to collect basic system information, derive functional safety and 
security requirements, as well as creating preliminary architecture. Tools and methods applied for 
this phase usually capture system information in an organized way (spreadsheets, databases) that 
allows the definition of dependencies and enables tracing of requirements and artefacts throughout 
the process. medini analyze is used for requirements engineering, safety analysis (FMEA, FTA), 
security analysis (Attack Tree, Security-FMEA) and for system modelling (SysML). 

 

 

Figure: Concept phase of UC4 

The System Design phase consists of two activities, Define System Design and Hardware and 
Software design. 

 

 

Figure: Product Life-Cycle: System Design 

The purpose of the System Design Phase is to create technical safety, security and performance 
requirements as well as a safe and secure system design that is aligned to performance 
requirements. Safety and security mechanisms are applied concurrently at first, but also balanced 
with respect to performance requirements. Each applied mechanism (e.g. safety building block or 
security building block) shall have its own performance attributes and thus enabling a way of 
performance-aware interference analysis. 

  Hazard and Risk Analysis

 Scope Exploration

Identify

Functions

Identify

Malfunctions

Identify

Security

Violations

Malfunctions

Security 

Violations

Functional 

Description

Security

Goals

Safety

Goals
Functional Safety 

Requirements

Functional Security 

Requirements

Preliminary 

Architecture

Describe

Hazards

Determine

Safety

Criticality

Level

Derive

Safety

Goals

   Threat Analysis

Describe

Threats

Determine

Security

Criticality

Level

Derive

Security

Goals

Functional Requirements Derivation

 Interference

Analysis

Derive Functional 

Safety Requirements

Performance 

Requirements

Derive Functional 

Security 

Requirements

Functional 

Requirements
Performance 

Requirements

Operational Situations

 Define System Design

Derive technical 

safety requirements

System

Design

 Apply Safety 

Mechanism

Derive technical 

security requirements

 Apply Security 

Mechanism

 Interference

Analysis

Technical Safety/Security/

Performance 

Requirements

Safe/Secure System 

Design matching 

performance

Functional Safety 

Requirements

Functional Security 

Requirements

Preliminary 

Architecture

Performance 

Requirements



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 28 

 

 

Figure: Product Life-Cycle: Hardware and Software Design 

With the technical safety/security/performance requirements and a system design in place, the next 
step is to decide which parts of the system are to be implemented in SW or HW. The flow applied is 
basically the same as the one for system design, but ending with technical 
safety/security/performance requirements and a system architecture including the system 
distribution into SW/HW. 

 

Realization Phase 

 

 

Figure 11: Product Life-Cycle: System Development 

In the development phase, the modelled system architecture with its safet/security mechanisms is 
mapped onto a chosen implementation platform. Ideally, that platform has code generation 
capabilities inhibiting the need of manual coding, thus saving costs and efforts. 

 

Define Hardware/Software Design

Define HW/SW 

Safety Requirements

HW/SW

Architecture

 Apply Safety 

Mechanism

Define HW/SW 

Security 

Requirements

Apply Security 

Mechanism

 Interference

Analysis

Technical Safety/

Security/Performance 

Requirements

Safe/Secure System 

Design matching 

performance

HW/SW Safety 

and Security 

Requirements

HW/SW Safety 

and Security 

Architecture

Technical Safety/Security/

Performance Requirements 

and System Architecture

   Development

Chose 

implementation 

platform

Map modelled 

mechanisms to 

platform-specific 

realizations

Derive configuration 

information

Generate/Provide 

code

Platform

Technical Safety/

Security/

Performance 

Requirements and 

System Architecture

Configuration 

Data
Implementation



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 29 

 

 

Figure: Safety and Security Validation 

In phase Safety and Security Validation requirements are validated against the implementation. Note 
that for the industrial drives demonstrator a specific testing phase is omitted due to the 
experimental nature of virtual prototyping. 

 

3.4.2 Tasks and Activities 

In order to avoid inconsistencies please have a look at the list of partner contributions, which can be 
found in D2.2.4 – Demonstrator Architecture, chapter 2. 

Nevertheless, a short overview is provided hereby. Following tasks related to tooling are expected for 
UC4 (please note that this list may evolve during the implementation phase and should be 
considered as living content): 

o Requirements modelling 

o SysML concept architecture model 

o FMEA/FTA 

o Security-FMEA/Attack Tree Analysis 

o FMVEA 

o Timing analysis of the system (with model imports from Medini Analyze) in CHESS 

o Interference analysis for safety/security/performance (at various PLC points – see 
D2.2.4 for an interaction points example, as well as D3.1 for a list of expected 
interaction points in UC4) 

o WEFACT modelling for certification support 

o SAN modelling (e.g. with Mobius) for safety/security/performance system validation 
in early phases 

o Virtual prototyping support (SystemC) by MDS with MVP tool 

o Virtual prototyping workflow with ISDD (MDS) (safety, security, performance) 

o Virtual prototyping workflow based on SysML-sec (TTool) (safety, security, 
performance) 

o Electronic motor modelling with Amesim coupled to the SystemC-based virtual 
prototype 

Preparation of test 

environment

Implementation

Validation plan

Validation report

Functional Safety/-

Security and Performance 

Requirements, 

Preliminiary Architecture

Validation of 

requirements



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 30 

 

o Secure Software Development Lifecycle (SSDLC) for security requirements 
engineering and security testing/assessment, as well as supporting security activities 
during the development process 

 

3.4.3 Methods and Tools 

The current tooling of UC4 provides some integration that has been implemented for the SESAMO 
project between medini analyze and CHESS. This included the 

 Hazard and Threat Analysis in medini analyze, 

 derivation of functional and technical safety/security concept by formulating requirements 
based on qualitative fault tree analysis that was done on a SysML model, 

 export of the SysML model to CHESS in order to do some complex Worst-Case-Execution-
Time analysis that resulted in more requirements that were later be exported back to medini 
analyze in order to show traceability to the system design model in SysML. 

 

In AQUAS there are some potential enhancements planned, that shall be addressed to better support 
interaction between disciplines and integrate quality analysis results in one common database for 
review and analysis in the interaction points. 

The exchange of SysML models between CHESS and medini analyze shall be enhanced, on the one 
hand the exchange of diagrams and their layouts shall be supported. Additionally, re-importing 
models from CHESS into medini analyze would be comfortable, making a roundtrip integration 
possible: Changes on the system model in CHESS could be fed back to the SysML models in medini 
analyze. In CHESS, the support for incremental updates could be improved, so that, when the system 
architecture design in medini analyze requires changes, not most of the separation of the system 
model into HW/SW in CHESS needs to be redone. 

With medini analyze and CHESS being used across life-cycle phases, the other tools need to integrate 
with the data taken from these two tools. medini analyze will provide requirements engineering and 
system modelling, CHESS will provide modelling and simulation with special focus on timing analysis. 

3.4.4 Interaction Points 

 

A detailed example for an interaction point is described in D2.2.4 – Demonstrator Architecture, 
chapter 1.3 – Product Life-Cycle. Furthermore, the current list of expected interaction points for 
other PLC phases can be found in D3.1. 

 

3.5 UC5 – Space Multicore Architecture [TASE] 
For UC5 Thales Alenia Space in Spain is developing an application that will run on a multi core 
platform which is certified by the ESA for flight purposes. 

The selected platform is a Gaisler GR712RC board which incorporates a Leon 3 dual core processor. 
In the scope of AQUAS the software aspect of this platform will be studied in order to study the 
interdependencies between Safety, Security and Performance. 

The software will perform tasks like memory scrubbing, watchdog functions and telemetry and 
telecommands receival/sending, which will run in separate cores in the defined platform. The 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 31 

 

possibilities of locks, interdependencies and inconsistencies due to concurrency problems will be the 
main focus. 

Requirements for each aspect have been defined and subjects like achieving the target performance 
while maintaining the safety and security aspects of the application intact will have to be studied.  

 

Figure: Stages in UC5 

AQUAS partners will contribute to this study with the proposed methodologies and tooling. 

INTECS: Provide support for the modelling of the SW architecture and associated timing properties. 

To be used to enable schedulability, worst-case response time analysis. 

CHESS information could be used to instrument the TimingProfiler tool. 

Collaboration with All4Tec. Understand safety/security related information that can be exchanged 
between the two tools. 

TECNALIA: Analyze the use case and to develop an assurance case by using the OpenCert tool. 

OpenCert is a product and process assurance/certification management tool to support the 
compliance assessment and certification of safety-critical systems. 

MDS: Participate in the formalization of a workflow for the balancing of Safety, Security and  
Performances. 

Show the capabilities of the ISDD© which is a platform integrating each process of a project: 
Specification, Design and Documentation. 

 

ITI: A2K tool upgraded to simulate, generate code, and monitor dual-core, shared memory,                                   
Leon processors running RTEMS. 
A2K tool upgraded to provide sensitivity analysis of task schedulability to task timing parameters. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 32 

 

 

BUT: BUT will leverage its long-term experience with hardware-accelerated solutions of various 
computationally expensive tasks to evaluate the efficiency of the considered system architecture of 
the use case and to investigate possible optimizations of the proposed solution using, e.g., 
specialized hardware. 

BUT will contribute tools and methods for detecting concurrency defects mainly through dynamic 
analysis using its ANaConDA framework. 

TRT: State of the art done on performance verifications techniques for multicore GR712RC 

Coordination meeting with ITI. 

Ongoing: Work on detail software architecture of the case-study, definition of methodology for 
FPGA. 

UNIVAQ: Introduced Safety (Sa)and Performance (Pe) constraints into the Hepsycode Methodology 

Extended the Design Space Exploration (DSE) to consider processes/tasks/threads partitioning (with 
HPV SW-partitions) 

Analyzed different HW/SW multi-core LEON3 scenarios. 

SYSGO: SYSGO will contribute to the AQUAS project its safe and secure real-time hypervisor PikeOS, 
which will be used to examine novel techniques for improving safety, security, and performance in 
combination, by trying out new static analysis techniques. In the context of this use case, SYSGO will 
explore to create its own special analysis tools especially suited for specific problem classes with the 
PikeOS hypervisor, where we do not have any tool available. 

HSRM: Integrating verification and testing. Methods and languages for Worst Case Response Time 
(WCRT). Layered overall architectural design of a real-time microkernel. 

ABSINT: Adapted TimingProfiler(TP) tool to UC5. Supplied all partners with TP and training. Support 
partners in usage of TP. 

ALL4TEC: Integration of Safety Architect tool with Papyrus/CHESS tool to import system architecture 
model. Safety analysis (FMEA/FTA) on the UC software architecture model. Evaluate Safety Architect 
and Cyber Architect tool integration for combined safety and security analysis. 

 

Aside from the SW development, as a sub-use case, TRT will develop an activity involving an FPGA 
which they will coordinate and will have contribution from several partners under the scope of UC5. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 33 

 

4 Tools 

This chapter describes the tool-specific functionality required to support the co-engineering process 
according to the AQUAS methodology. The descriptions focus on tool features supporting the 
interaction of domains and disciplines, e.g. in the area of tracking process progress, data and 
artefacts, and particularly interaction points, where cross-domain and cross disciplinary analyses 
must be executed to realize safety-security-performance analysis, supporting system design space 
exploration and trade-offs. 

Providing this functionality requires tool integration in many cases. The tool descriptions reference 
back to the delivery process of the use cases, where applicable. 

4.1 System Modelling and Analysis of Quality Criteria [AMT] 
AMT is supporting the safety and security co-engineering by bringing in its tool medini analyze, a 
toolset supporting the safety analysis and design for software controlled safety related functions. As 
depicted in the figure below system models that represent the design of these functions are 
enhanced by properties that support the different analysis methods that are applied in the context of 
safety considerations, like Hazard and Risk Assessment (HARA), Fault Tree Analysis (FTA) or Failure 
Mode and Effect Analysis (FMEA). 

 

Figure: Safety related analysis in medini analyze  

Beside the safety aspects medini analyze supports the analysis of security quality criteria based on 
the same mentioned system models (see figure below). It allows for the modelling of assets that 
might be potential goals for a security breach. These breaches can be examined by conducting an 
Attack Tree Analysis that result in Attack Paths describing potential scenarios how the asset can be 
attacked. These scenarios are assessed in respect to the criticality by applying a Threat Analysis and 
Risk Assessment.  

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 34 

 

  

Figure: Security related analysis in medini analyze  

In order to support the different requirements coming from the safety standards in the different 
domains (e.g. Medical or Industry) and additionally to support the various methods that are applied 
in the area of security medini analyze will be extended by the concept of so-called domain profiles. 
These profiles introduce the domain specific terminology, the different risk graphs and different 
analysis methods in a highly adaptable manner. This is especially important in the security domain 
because here the standards are currently under development and not yet finalized. 

Examples for the differences in standards and methods supported by domain profiles are: 

 Criticality Levels (SIL, DAL, ASIL) 

 Analysis Methods like  

o Hazard and Risk Assessment 

o Threat Analysis 

o Support for threat model classification according to STRIDE [STRIDE] 

o Fault Tree Analysis 

o Attack Trees 

o Failure Mode and Effect Analysis 

o Support for Hardware Metrics (Safe Failure Fraction, Single Point Fault Metric, Latent 
Fault Metric, etc.) 

 

The potential interaction points that medini analyze supports consist in the exchange of system 
design models and requirements. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 35 

 

 

Figure: Interfaces for interaction points  

Thus various interfaces to other tools to support this exchange of models exist and will be extended 
in the AQUAS project. To be emphasized, in particular, are on the one hand side the interfaces to the 
CHESS platform that were initially developed in the context of the SESAMO project and that are 
planned to be extended and on the other hand the interface to DOORS NG that was developed 
within the AQUAS project for UC2. 

The following table shows the proposed specific functionalities of medini analyze to be addressed in 
AQUAS. 

PLC phases 
addressed 

Tools Interactions 
to be implemented 

Domains 
interactions 

Identified 
interaction point 

Expected SSP 
benefits 

Use case 

Concept and system 

design 

medini analyze, 

Papyrus/Chess, 

Safety Architect, 

SSLDC  

Safety and Security 

analysis with medini 

analyze and 

exchange of 

requirements and 

system models  

Tools support to 

improve Safety, 

Security properties 

UC2 - Medical 

Concept and system 

design 

medini analyze and 

Papyrus/Chess 

 

Safety and Security 

analysis with medini 

analyze and 

interactions with 

CHESS 

Tools support to 

improve Safety, 

Security and 

performance 

properties 

UC4 – 

Industrial 

 

4.2 Co-Design and Implementation of Safety and Performance [ITI] 
 

ITI is contributing to the AQUAS project objectives by providing the foundations in the development 
processes to execute co-engineering activities efficiently, especially in the domains of safety and 
performance. These processes will in particular define and implement the mechanisms of interaction 
between the different tools and technologies used in the AQUAS co-engineering tasks. In other 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 36 

 

words, ITI is providing the technical support, expertise, software and work-flows to facilitate the 
variety of interaction points that will emerge during the project. 

 

At this stage in the project most of the interaction points are still under discussion and not yet well 
defined, so we are adopting an agile, flexible approach to their design and implementation 
processes. These activities will focus on researching and identifying the ways and mechanisms of 
allowing partners’ tools to perform co-engineering analysis of their models and design resources. 
This will be driven by the outputs of Work Package 3 (methodology) and of course the ongoing work 
in each use case. An important main goal is to facilitate tool interactions that will enable analysis and 
modeling to check validation of the associated requirements. 

 

ITI is also exploring the possibilities of Design Space Exploration where the engineer can try out 
different system configurations to see how trade-offs between safety, security and performance 
(SSP) artifacts and metrics affect the final system design. This task of course depends strongly on the 
definitions of the appropriate SSP metrics and how these relate to system design parameters. These 
quantities are now beginning to emerge from the other work packages in the project. 

 

ITI is using its Art2kitekt (A2K) tool in two use cases: UC2 (medical devices) and UC5 (space multi-
core). A2K is a tool that enables modeling, analysis (timing, power, etc.), simulation, code generation, 
monitoring, and quality management of heterogeneous cyber-physical systems. In UC2, A2K is being 
used as a test manager for the medical hardware-in-the-loop. In this application A2K will provide 
stimuli to the system under test, collect system outputs, and compare these to desired safety and 
performance results. A2K will also interface with other tools as a manager and implementer of the 
(to be defined) interaction points. 

 

In UC5 A2K will be used for modeling and timing analysis of the multi-core architecture. We are 
interested in exploring how aspects of safety and performance are related to different deployment 
conditions of, for example, the distribution of tasks to processor cores, the data communication 
between the cores, and use of shared resources. This is a good example of the close relationship 
between design and implementation in a safety and performance context. 

 

At the present time ITI is currently collaborating with the partners Absint and BUT in building some 
co-engineering demonstrator applications. With Absint ITI is planning to use their TimingProfiler tool 
in conjunction with A2K to provide accurate estimates of the worst-case execution times of software 
tasks. These timings will be imported into A2K to enable timing, schedulability and sensitivity 
analyses to be performed. ITI is also exploring how to integrate BUT’s static code analysis tools 
(Anaconda & Perun) into A2K to provide safety and performance information during the design and 
implementation processes. 

 

Regarding other tool interactions, as the project develops ITI will take into account the various 
information that needs to be collected in the design models and analysis tools that should be 
collected for enabling co-engineering support. Beyond model types and formats, semantic gaps, data 
repositories, management, communications, and dependencies are all being addressed, in an agile 
fashion.  



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 37 

 

PLC phases 
addressed  

Tools Interactions to 
be implemented  

Domains interactions  

Identified interaction 
point  

Expected SSP 
benefits  

Use case  

Concept and system 
design  

A2K – simulation, 
timing analysis & code 

generation.  
BUT Code Analysis 

Tools  

Absint Timing Profiler  
  
  

Safety and 
Performance.   

Sensitivity analysis.  

Design Space 
Exploration  

Rapid exploration 
of system timing 

performance 
under different 
conditions and 
configurations.  

UC5 - 
Space  

Integration & Testing  

A2K Test Manager  

BUT Patient model  

Tools providing 
requirements for 

development of test 
plans.  

Interaction of security 
and safety.   

Hardware-in-the-
loop simulation 

and system 
testing.  

Simulation and 
evaluation of 

security aspects.  

UC2 - 
Medical  

 

4.3 Behavioural system analysis for improved SSP [SISW] 
 

The Safety-Security-Performance attributes of a Cyber Physical System are the indicators defining on 
how the Cyber Physical System realizes its functions in the physical world. That means that the 
embedded system software and hardware computational performances, safety and security rules are 
not always sufficient qualifying the SSP of a Cyber Physical System.  

 

As straightforward illustration is that even a simple PID (Proportional Integral Derivative) controller 
can’t drive efficiently an elastic actuator without considering its dynamic behaviour. By dynamic 
behaviour, we consider the time and frequency domain of the physical component operations. We 
also consider that the static attributes of the component are not sufficient to express the dynamic 
limitations of the system as well as its efficiency (especially energetic) in transient operations. These 
stability issues grow with the raising orders and complexity of the controllers combined with the 
mechatronics complexity. 

 

So, at first order designing a performant Cyber Physical System implies to consider at design stage 
control systems and physical systems in a combined way (mechatronic co-engineering) in order to 
orient and calibrate the controller design as well as modifying the physical design to achieve safe and 
optimal performance of the Cyber Physical System as a whole. 

 

In order to achieve optimal performances, it is necessary first to define the key SSP attributes of the 
Cyber Physical System. While for embedded system the performance is mostly straightforwardly 
measurable (computation time, delays, power consumption) and the safety and security covered by 
design rules and processes, the full Cyber Physical System SSP is specific to the product itself. Most of 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 38 

 

the time, theses SSP attributes are the key end user/customers observable criteria of purchasing 
choice (customer or business). As example, productivity and energy consumption will be considered 
for a production machine, energy consumption, emissions and longitudinal accelerations for a car, 
uncommanded train door openings occurrence for a train subsystem, operation robustness to SW 
attacks for a drive… 

 

Once these key SSP performance attributes defined, they must be evaluated during the design 
process and the right design tradeoff found an actualized. A typical tradeoff is the one between the 
energy consumption and the function speed. 

   
Figure: system performances attributes balancing applied to an hybrid vehicle (Siemens Amesim with 

Matlab Simulink controllers) 

 

This co-engineering approach between embedded systems hardware, software and mechatronics 
involve several design interaction points at different livecycle stages of the product, function of the 
product development techniques. 

 
Figure: typical performance interaction points in a CPS development process 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 39 

 

First interactions should happen at early stage in a model-based system engineering context (not 
always applicable), where designers and developers could implement “model in the loop” (MiL) 
interaction points, coupling control models (like matlab simulink) and physical models (1D, 2D, 3D) to 
investigate the system behaviour, balance design attributes and design choices. Anyway, despite its 
apparent simplicity, these approaches must carefully address the traps of heterogeneous models 
assemblies (effects of discretization’s at the interfaces). Some progresses have to be achieved in this 
field. 

Later in the development process, a Software-in-the-Loop (SiL) and/or Processor-in-the-Loop (PiL) 
interaction could be implemented. Such interactions are today limited due to the necessity to couple 
a full virtual execution platform (HW&SW) with a realistic enough plant model (enough to trick the 
control safety and security itself). Most of the state of the art implementation of such interactions 
deal only with adapted software coupling (for SiL) and HW emulators couplings (SystemC, QEMU…). 
In the future, such interactions will became more and more complex as well as critical for the system 
optimal performances. Such interaction will require significant technological progresses on the 
coupling technologies to be fully relevant. This is also the stage where the most detailed plant 
models will be used. 

The last CPS development interaction point is the coupling of the physical control system with the 
virtual plan (Hardware in the Loop) to evaluate, calibrate and final tune the controllers prior to their 
integration and commissioning. At this stage this interaction could also drive some plant modification 
too. Here, the main drawback is the realtime execution constraint which limits the plant models 
representativity (fixed step, RT computation). 

 

PLC phases 
addressed 

Tools Interactions 
to be implemented 

Domains 
interactions 

Identified 
interaction point 

Expected SSP 
benefits 

Use case 

Integration 
and Testing 

System-level safety 
requirements 

management with 
coupled controller 

(HiL or FMI or 
other) and virtual 
environment in 

Amesim 

System-level safety 
requirements with 

embedded 
software and 

dynamic 
mechatronic 
simulation 

Improved testing 
(coverage, 

unforeseen SoS 
behaviors…), faster 
commissioning and 

improved 
operational 
diagnostics 

Rail 

Integration 
and Testing 

qBox (controller) 
couplings with 
Amesim (plant)  

IAP_10 

Safety 
requirements with 

virtual control 
platform and 

dynamic 
mechatronic 
simulation 

Improved testing 
(coverage), faster 

commissioning and 
improved 

operational 
diagnostics 

Industrial drive 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 40 

 

4.4 Asset and Artefact Management for Co-Engineering [MDS] 
In Aquas project, Magillem brings four tools3. 

Integrating Specification, Design and Documentation 

In UC4 and UC5, Magillem brings ISDD©, which stands for Integrating Specification, Design and 
Documentation. The main goal is to provide a unique, integrated software environment that 
streamlines specification, design and documentation processes during the product design cycle. All 
data in the project (requirements, specifications, metrics, software, test cases, etc.) are linked, all 
stakeholders are aligned. Indeed, any change in the project may generate impacts: they are detected 
and identified; experts are notified. Key elements are then brought to the forefront to facilitate 
analysis of these potential impacts. Magillem proposes to organize interaction points when a change 
reveals the need to balance Security, Safety and Performance (SSP). 

Magillem Content Publisher 

A good complement to ISDD© is MCP (Magillem Content Publisher): it is a comprehensive Digital 
Publishing suite that facilitates the review, reuse and repurposing of content created in many 
heterogeneous formats. For instance, it features a set of powerful metadata and a semantic linking 
framework that enable to synchronize content between electronic system design and documentation 
workflows. 

Magillem Virtual Platform 

In UC4, thanks to Magillem’s technologies, SystemC models are wrapped in IP-XACT, a format that 
defines and describes electronic circuit designs allowing to use them in EDA tools like MVP (Magillem 
Virtual Platform). Thus, it is easy to connect each IP in order to realize the design. Moreover, using IP-
XACT standard enables to use all its advantages: automated configuration through vendor-neutral 
scripts, exchange of complex components libraries between EDA tools, etc. It also enables the 
possibility to defines properties for each element which can have an impact on performances 
(number of cores, core frequencies, memory available, etc.). Finally, MVP generates all mandatory 
files to run the simulation (netlists, CMake files…). Furthermore, the full integration of MVP with 
ISDD© can give an edge during the debugging phase. 

Magillem Platform Assembly 

In UC5, Magillem proposes MPA (Magillem Platform Assembly): also using the IP-XACT standard, it is 
possible to use this EDA tool to design hardware platforms (components with their connections, 
FPGAs, memory maps…) and link them to the rest of the project: specifications, test plans… 

In order to strengthen the capability of ISDD, Magillem uses standards (ReqIF for requirements, DITA 
for documentation, IP-XACT for electronic circuit designs…). Therefore, the favored method to 
integrate with the other tools of the project is to leverage their standards: SysML, Marte, UML, 
OpenPSA, SACM, GSN, CVSS… Thus, the process that will be built during AQUAS will be agnostic of 
the tools used. 

4.5 Modelling of security requirements and properties, and verification 
through static code analysis 

In T4.1, CEA proposes tooling for process support of the model-based static code analysis method for 
software/security co-engineering. The tooling will be based on existing Papyrus and Frama-C tools. 
Frama-C is a static code analyser that takes as input C code with annotations written as comments in 

                                                           

3 In fact, MVP and MPA are packed together in our EDA suite. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 41 

 

ACSL, a properties specification language. Papyrus is a UML modeller that can be customized for 
DSMLs and supports MDE tooling such as code generation. 

The goal is to bridge the gap between low-level static code analysis with high level requirement and 
architecture models made with partner tools or Papyrus itself. 

In T4.1, CEA will study interoperability (import/export) features necessary to import/export 
requirement, system and software models of the use-cases, related to other tools working on the 
use-case, into/from Papyrus. CEA will also implement the necessary DSMLs in Papyrus for 
specification and specification interoperability. For example the SysML-Sec profile may need to be 
implemented in order to import existing security requirements. Finally, CEA will extend to its code 
generators to support the generation of ACSL annotated C/C++ code for static code analysis, and 
therefore relate such analysable code and analysis results to the requirements, system, and software 
architecture models. 

In tasks T3.1 and T3.2, for the railways application, the WP plug-in of Frama-C will be used for 
verifying the conformity of the C-functions (issued from the code generator of the Atelier B) with 
their specification expressed in B0 refinement language. To reach that objective, the translation of B0 
specification to ACSL specification has to be studied, and will be achieved as part T4.2. In T4.1, CEA 
will specify the infrastructure to support the interaction of Atelier B and Frama-C, as well as the 
infrastructure to measure the performance of such an approach. 

The implementation of tools specified in T4.1 will enable us to apply the software/security co-
engineering method described in D3.1. The following figure is an excerpt from the deliverable that 
sums up the method: 

 
Figure: Co-engineering method 

As mentioned previously, CEA also wish to bridge the gap between such a method and models 
produced by partner tools. In terms of cross-domain interactions, the following table shows those 
that are planned. 

 

 

 

 

 

 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 42 

 

PLC phases 
addressed 

Tools Interactions 
to be 

implemented 

Domains 
interactions 

Identified 
interaction point 

Expected SSP 
benefits 

Use case 

Requirement Security 
requirements 

modeler 

Interoperability 
between system-

level functional and 
non-functional 
requirements 

Improved 
interoperability and 

traceability 
between system-

level requirements 

Medical 

Implementation Code/ACSL 
properties 

inference and 
generation too 

Conformance 
between system-

level requirements 
and software-level 

properties 

Improved 
traceability and 

conformance 
between software-
level properties and 

system-level 
requirements 

Medical 

Implementation B0 specification to 
ACSL generator 

Conformance 
between B0-level 
requirements and 

software-level 
properties  

Improved 
trustworthiness of 
conformance of C 
code generated 

from B0 
specification 

Rail 

4.6 Modelling and Analysis of Co-Engineering Requirements [Intecs] 
One important aspect required to properly support interaction points regards the modelling and 
analysis of co-engineering requirements across different tools. One example comes from the 
SESAMO project, where Medini Analyze and CHESS tools have been integrated to support safety 
requirements and components traceability from system to software design phases and then to 
analyze the possible impact of performance requirements (via worst case response time analysis) 
upon the safety requirements. 

In the AQUAS project, and more properly in T4.1, the goal related to the CHESS tool is to enrich the 
aforementioned support in different dimensions, like extending the CHESS-Medini tool integration 
(e.g. by supporting in CHESS the automatic creation of diagrams starting from the architectural 
model imported from Medini) and by adding support for security requirements definition and 
analysis. 

Concerning security requirements, other tools proposed in AQUAS are focusing on security 
requirements definition, like the Security Development Life cycle management tool (SSLDC) proposed 
by TrustPort (see Chapter 4.13): the foreseen goal in AQUAS is to be able to connect security 
requirements derived by SSLDC with the CHESS design and analysis tool. For this, two possibilities 
have been identified: (i) import of SSLDC requirements in CHESS and (ii) usage of traceability support 
to trace requirements available in SSLDC to the CHESS model entities (e.g. components, components 
contracts [Benevniste, 2012]). The first solution, import of requirements in CHESS, allows the 
representation of the requirements derived with SSLDC in the CHESS environment, basically by using 
the SysML support for requirement modelling possibly enriched with dedicated stereotypes to 
represent requirements properties. The requirements, once available in CHESS, could then be traced 
to the CHESS modeling entities, still by using the standard SysML support regarding traceability links. 
The other identified possibility (ii) foresees the usage of a dedicated traceability tool which allows the 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 43 

 

modelling of traceability links between the CHESS modeling entities and the requirements available 
in the SSLDC and their storage in a dedicate traceability model. Solution (ii) avoids duplication of 
information (i.e. the requirements) between CHESS and SSLDC, while leaving the focus on the 
traceability relationships definition and usage. 

The goal of CHESS is to support analysis of requirements, by using the analysis provided by CHESS 
itself or provided by external tools integrated with CHESS. First, requirements (defined/imported in 
the CHESS model or available from an external tool) have to be formalized in CHESS by using 
dedicated (modelling) languages. In particular, performance requirements, like for instance the ones 
related to worst case response time and deadlines, are formalized by using the OMG standard 
MARTE modelling language. Safety requirements formalization is supported by using the contract-
based approach, in particular by using the OCRA temporal language [OCRA]; moreover formalization 
of safety requirements concerning failure modes of components is supported by the dependability 
profile coming with the CHESS modelling language [CHESSML].  

MARTE properties can then be used to feed schedulability and worst-case response time, by using 
the integration with the MAST tool [MAST]. 

In the context of the ATM use case, the CHESS toolset can support the modelling of the IMA (and 
ARIJNC-653) concepts of partitions, processes and operations and analysis of the two-level 
scheduling regime assumed in the IMA architecture. CHESS provides means to help the designer 
configure the system and compute a partition schedule for each available processing unit. The model 
and the generated schedule can then be used as inputs for a response-time analysis engine that 
calculates the worst-case response time of each task and therefore, assesses the overall system 
schedulability. 

Information provided about failure (propagation) models can be used to executed failure 
propagation analysis [FLA], directly supported by the CHESS tool, or quantitative state-based analysis 
available via integration with the DEEM tool [DEEM]. 

OCRA contracts can also be used to express security requirements; this is currently under study in the 
context of the AMASS Ecsel project [AMASS]. Furthermore in AMASS there is an ongoing study 
focusing on CHESS FLA failure propagation analysis adaptation for security: this requires an extension 
of the CHESS dependability profile to enable the representation of security aspects, like security 
threats, and this extension will be evaluated by considering the needs arising in the AQUAS projects 
too. For instance, the concept of security threats is also considered by the SSLDC tool, so regarding 
CHESS-SSLDC interaction, in addition to the aforementioned traceability between security 
requirements, traceability between security threats definition between the two tools will also be 
investigated. 

To enrich the set of possible analysis to be used, an integration between CHESS and the 
SafetyArchitect tool from All4Tec is foresees (see Chapter 4.9), so by sharing the information about 
the system architecture, safety and security properties modelled between the two tools; this would 
allow to enable the different analysis provided by CHESS and SafetyArchitect while relying on a 
common and consistent set of information. 

 

 

 

 

 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 44 

 

PLC phases addressed Tools 
Interactions to 

be 
implemented 

Domains 
interactions 

Identified 
interaction point 

Expected SSP 
benefits 

Use case 

Requirements/ 

Modeling/Analysis/ 

Implementation 

Import of 
Safety/Security 
Requirements 

(SSDLC) 
Safety/Security 

State Based 
Analysis (SAN) 

Analysis of the 
interaction of SSP 
properties in the 

architecture/ 
design 

Impact and trade 
off analysis 

ATM 

Requirements/ 

Modeling/Analysis/ 

Implementation 

Exchange of 
requirements a 

system 
architecture 

models (medini) 

Conformance 
between system-

level 
requirements and 

software-level 
properties 

Improved 
traceability and 

conformance 
between software-

level properties 
and system-level 

requirements 

Industrial 
Drive 

Requirements/ 
Modeling/Analysis/ 

Implementation 

Exchange of 
system 

architecture 
with safety and 
security models 
(All4Tec tools) 

Interaction of SSP 
properties in the 
SW architecture 

Impact and trade 
off analysis 

Space 

 

4.7 OPENCERT [tecnalia] 
Tecnalia brings Eclipse/Polarsys OpenCert to AQUAS. OpenCert helps integrating the engineering 
activities with the certification activities from early stages. During AQUAS, Tecnalia will contribute on 
the specifications of tool extensions based on WP3 inputs to represent safety, security and 
performance co-engineering requirements. 

At the core of OpenCert functionalities we can find information management capabilities regarding 
standards and regulation. That means that the applicable reference frameworks for the use cases can 
be stored, retrieved, categorized, associated, searched and browsed in a modelling framework. For 
example, the following figure shows an excerpt of the European Cooperation for Space 
Standarization standard ECSS-E-ST-40C which deals with general requirements for software. In this 
specific excerpt, the figure shows reference activities, subactivities as well as reference artefacts that 
are defined as inputs and outputs of the activities. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 45 

 

 

Figure: Excerpt from ECSS-E-ST-40C 

In AQUAS, it is of special interest to extend the tool to investigate the interplay of quality criteria at 
the level of standards. Our intuition is that interaction points can be expected and planned according 
to the processes, activities and artefacts defined in the reference frameworks that applies to a 
system (e.g., an activity related to performance has a sub activity related to security). 

Apart from the modelling of standards, OpenCert supports the management of the assurance 
project. This is possible through the modelling of assurance cases (GSN notation is used), evidence 
management, assurance process management, and global monitoring of the compliance with 
standards and regulations. OpenCert also tries to automate traceability, compliance checking, 
assurance process planning or metrics management. It also has functionalities to see the effective 
progress of the work and level of compliance as well as functionalities for effective reuse of artefacts 
from one project to another. 

It can be considered that the co-engineering process is supported by the OpenCert tool to some 
extent. Also, the co-engineering activities need to consider the regulation space affecting the 
decisions regarding the alternatives in the trade-off analysis. Tecnalia will strength and enhance 
OpenCert with support to data and artefacts management which are the evidence used in these 
contexts. Interoperability approaches with other tools will also be investigated. 

 

 

 

 

 

 

 

 

 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 46 

 

PLC phases 
addressed 

Tools Interactions 
to be implemented 

Domains 
interactions 

Identified 
interaction point 

Expected SSP 
benefits 

Use case 

Concept and 
system design 

OpenCert: Location 
of safety, security 
and performance 
interplays at the 
normative space 

and within 
assurance projects. 
Argumentations in 

the assurance 
projects will be 

related to results of 
partners’ tools (e.g., 

ALL4Tec) 

Safety and security 
requirements to 

comply with 
standards.  

Improved 
traceability of co-

engineering results 
to certification 

assets. 

UC2 – Medical 
and UC5 – Space 

Multicore 

 

4.8 Static and Dynamic Code Analysis in the Co-Engineering Process [BUT] 
BUT will contribute to finding suitable ways of supporting safety-security-performance co-
engineering in static as well as dynamic analysis tools, reflecting its long experience with both kinds 
of the analyses. A stress will be on combining various kinds of analysis across the safety-security-
performance boundaries (e.g., by exploiting results of memory safety analysis from tools such as 
Forester or Predator, combined with dedicated analysers for performance of integer programs such 
as Loopus, to support performance analysis of more complex programs; or using means for dynamic 
safety analysis of concurrent programs from the ANaConDA tool to facilitate security analysis), 
supporting modular or focused analyses to be as efficient as possible at interaction points, and 
design of techniques automatically detecting performance degradations between different versions 
of software in the Perun tool whose development recently started at BUT. Moreover, BUT will also 
contribute to finding suitable ways of measuring the obtained assurance guarantees with a particular 
stress on the area of concurrent systems handled by the ANaConDA tool. The tools above mentioned 
are briefly characterized below. 

ANaConDA 

ANaConDA is a framework provided by BUT. This framework tackle adaptable native-code 
concurrency-focused dynamic analysis built on top of Intel PIN instrumentation tool. The main goal of 
the framework is dynamic analysis of multi-threaded C/C++ programs on the binary level. The 
framework provides a monitoring layer offering notification about important events, such as thread 
synchronisation or memory accesses, so that developers of dynamic analysers can focus solely on 
writing the analysis code. In addition, the framework also supports noise injection techniques to 
increase the number of interleaving witnessed in testing runs and hence to increase chances to find 
concurrency-related errors.  

In order to support the co-engineering process, we plan to contribute by enhancing ANaConDA 
framework by focussed strategies. The goal of these strategies is to provide a fast feedback to the 
engineers targeting the recently modified parts in the project under development. Contrary to whole 
project testing, the focused analysis can be much more efficient in running time and subsequently 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 47 

 

allows immediate safety bug-discovery incidentally introduced together with changes targeting 
security (resp. performance) improvement. 

Static tools for memory Safety 

Dynamically allocated memory space and complex pointer manipulations are a frequent cause of 
nasty errors that are easy to cause but often difficult to discover. The BUT provides two tools 
targeting the memory safety-Predator and Forester. 

Our goal is to enhance techniques behind our memory safety-static analyser to support composite 
verification by means of abduction methods. These methods compute contracts for particular 
functions and allows one to perform a targeted static analysis of a small part of the code without 
evaluating the whole project and providing a test harness. Hence it can target only the modified 
functions in the code and reuse as much as the so-far computed contracts for the unmodified parts 
of the code. Subsequently, one can quickly discover memory safety errors introduced within the last 
project updates. 

Performance 

Static program analyses targeted at automated derivation of various program complexity measures 
(resource bounds) is nowadays very active and demanding research area. One of the most light-
weight, scalable, and practically applicable approaches is the approach implemented in the Loopus 
analyser. Loopus was originally designed primarily for programs with integer variables at the Vienna 
University of Technology and recently extended in collaboration with BUT to handle also pointer 
manipulating programs in the Ranger tool based on the collaboration of Forester (memory safety) 
and Loopus tools.  

The Loopus already provides composite resource analysis of particular functions, which can be 
employed in the co-engineering process. Moreover, by allowing composite static analysis in our 
memory safety tools, we can easily extend Ranger to composite complexity analysis of pointer 
programs as well. 

The Perun framework represents a dynamic analysis targeting performance. It provides a generic 
framework for collecting various performance measures (running time, memory consumption, etc.) 
for various input data. The obtained measures can be subsequently analysed by means of statistical 
methods, allowing one to, e.g., derive performance models of the analysed programs. 

Our recent goal is to enhance Perun framework by automated detection of performance 
degradation. The principle is based on comparison of performance of the current version of the 
project with an older referential version (versions). Moreover, we like to compare also performance 
of particular modules of the project to their referential versions. By this, we can detect a potential 
degradation immediately. 

 

 

 

 

 

 

 

 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 48 

 

PLC phases 
addressed 

Tools Interactions to 
be implemented 

Domains 
interactions 

Identified 
interaction 

point 

Expected SSP benefits Use case 

Integration 
and Testing 

Art2kitekt or code 
repository with 

Forester/2LS/Predator 
x Loopus/Ranger 

General code-
level safety 

requirements 

Improved safety 
(Forester/2LS/Predator) 

and performance 
(Loopus/Ranger) 

properties 

Space 
Multicore 

Integration 
and Testing 

Art2kitekt or code 
repository with 

ANaConDA/Perun 

Safety 
requirements 
with created 
test harness 

Improved safety and 
performance properties 

Space 
Multicore 

Integration 
and Testing 

Art2kitekt or code 
repository with 
ANaConDA with 

TrustPort penetration 
tests 

Safety and 
security 

requirements 

Improved safety and 
security properties 

ATM 

 

4.9 Safety and Security Co-engineering Including Performance [All4Tec] 
ALL4TEC has proposed in deliverable D3.1-Section 2.10 a tool-based methodology for safety and 
security co-engineering. As presented in figure below, the process consists in exploiting partner’s 
tools based on UML/SysML language (e.g., Papyrus/Chess or Capella) for system modelling and 
All4TEC tools (Safety Architect and Cyber Architect) for Safety and Security co-analysis.  

 

Figure: ALL4TEC Safety and Security co-engineering methodology 

The seamless interoperability in this tool-based process allows decoupling the system architecture 
model from safety or security analysis Thereby, each engineer (System Engineer, Safety Engineer or 
Security Engineer) can solely focus on his concerns, with dedicated tools and terminology. For 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 49 

 

example, Safety Engineer could use an interface between Capella and Safety Architect to generate 
system or component level fault trees or FMECA tables. Secondly, the development of a specific-
concern viewpoint in a tool dedicated to another concerns allows co-engineering between these 
concerns. For instance, with the Security viewpoint in Safety Architect, Safety engineer can use the 
results of security analysis realised in Cyber Architect (e.g., Attack Tree) to generate a merged Fault 
tree and Attack Tree for assessing the influence of security-relevant events on safety top event.  

ALL4TEC also proposes to expand this model-based safety and security analysis by including 
performance concerns. In addition of ALL4TEC’s safety and security analysis tools, the proposition is 
to use performance-based tools to analysis the impact of safety and security requirements on 
performance issues. For example, system design models enriched in Safety Architect or Cyber 
Architect with Safety or Security requirements can be imported in these dedicated tools (for 
example, CHESS supports End-to-End Response Time Analysis, which can be used for the 
performance of components interactions). Performance analysis with respect of Safety or Security 
requirements could lead to the definition or detailed technical Safety or Security requirements, 
which can in turn be exported back to Safety Architect or Cyber Architect.  

 

PLC phases 
addressed 

Tools Interactions 
to be implemented 

Domains 
interactions 

Identified 
interaction point 

Expected SSP 
benefits 

Use case 

Concept and system 

design 

Safety Architect 

with Papyrus/CHESS 

and OpenCert 

Safety and Security 

analysis with A4T 

tools and 

interactions with 

partner tools 

Tools support to 

improve Safety, 

Security and 

performance 

properties 

UC2 - Medical 

System design 

Safety Architect 

with Papyrus/CHESS 

and Art2kitekt 

Safety and Security 

analysis with A4T 

tools and 

interactions with 

partner tools 

Tools support to 

improve Safety, 

Security and 

performance 

properties 

UC5 – Space 

Multicore 

 

4.10 Performance evaluation before implementation [TRT] 
In general, many legal mappings potentially exist for an application, but the goal is to find one or a 
few mappings (and associated scheduling policy) that fit at best a set of Quality of Service (QoS) 
criteria, in particular on computing throughput and latency. Those real-time requirements are related 
to the behaviour in time of all elements of the machine that work simultaneously to run the mapped 
application. In some cases, when the machine is available and has the necessary monitoring 
hardware, some figures of throughput and latencies can be measured on target.  

However, in particular with today’s complex heterogeneous SoCs, finding the right mappings needs 
to envisage several forms of implementation of some nodes in the application graph (e.g. targeting 
general purpose or FPGA) before achieving a well-balanced usage of resources.  In such cases, 
developing the full executable code for each possible implementation is rapidly tedious. Using a 
platform simulator that quickly approximates the behaviour in time of the machine for each mapping 
variant simplifies largely the process, which speeds up the iterative process of finding efficient 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 50 

 

mapping. In addition, such a simulator gives potential access to timing records of any resource of 
interest in the machine (bus traffic, memory accesses...), giving an enhanced visibility of bottlenecks.  

SPEAR DE 

Spear DE is a parallel framework which can be used to represent a computing intensive application as 
a non-cyclic graph composed of nodes called “tasks” (application model), producing and consuming 
multi-dimensional arrays of data. A task represents a function call executed into a nest of loops with 
linear accesses to and from output and input arrays. Two ways exist to create this application model: 
the user can create from scratch this application by hand (graphically) or the user can import the 
application model from a C99 code respecting some coding rules. 

 

Spear DE also considers another model about the execution platform. This model provides a 
representation of the target system, which may not be the exact representation of the physical 
architecture. Few objects are enough to model such an execution platform: processor, memory, 
busses and interconnection link objects. Modelling memory hierarchies is of paramount importance 
when considering multi/many-core architectures.  

 
Graph nodes from the application model are then graphically mapped onto the execution platform 
model of the execution platform that provides a topological view of CPUs, memories and 
communications. Some nodes can be mapped on several processing elements having one or more 
loops of the nest partitioned. If the memory is distributed or data reorganisation is needed, 
communication nodes have to be inserted in the application graph. Spear DE helps the programmer 
to identify where the communication nodes have to be inserted and computes them automatically. 

 

Spear DE provides a set of graph transformations and allocations that can be used by the designer to 
quickly create legal mappings of an application to a target computing platform. Among other 
verifications, Spear DE guarantees that data will be correctly deployed in time into the right 
memories of the machine, not exceeding the memories capacity, and made available to the 
processors that use them. The mapped application summarises all the design choices of the 
programmer. As output, Spear DE produces an XML file which can be further used to generate the 
intermediate representation (IR) to be used for the back-end tools (e.g. performance simulator), or 
to generate the final code to be compiled for the actual target architecture. 

Architecture simulator 

A simulator platform has been developed in PtolemyII environment. The goal is to add to the 
topological view of the platform model used for mapping the necessary building blocks to represent 
the behaviour of time. These include additional timing information for parameterisable CPUs, 
memories, and communication elements, and sequencers that hold and schedule abstracted views of 
programs within CPUs. The simulator has also the possibility to represent resources interferences: 
this happens in complex SoCs, where an activity on one resource often creates an access conflict to 
another shared resource or requires some pre-empting service from a control resource that was busy 
doing another activity.  

Once the platform has been captured within the simulator, candidate mappings (from e.g. Spear DE) 
can be deployed on the platform model. The simulation itself is run under the control of PtolemyII’s 
Discrete Event director, where time-stamped events are sent between actors of the simulation, 
emulating the behaviour in time of the target platform. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 51 

 

 

Figure: Plattform 

 

PLC phases addressed Tools 
Interactions to 

be implemented 

Domains 
interactions 

Identified interaction 
point 

Expected SSP 
benefits 

Use case 

Implementation Architecture 
simulation with 
SPEAR DE and 

HLS generation  

Conformance 
between system-

level requirements 
and performance 

Generate and 
place code 
matching 

performance 
requirements 

Space 
Multicore 

4.11 Timing behaviour verification for Performance and Safety at early design 
phases safety [TRT] 

It has always been a challenge to introduce timing verification early into the industrial development 
process as the inputs required for the verification, in particular the worst-case execution time and 
the system behaviour description, are moving targets all across the different development process 
phases. Thanks to the introduction of model-based methods (and the ability to express non-
functional properties with dedicated, concern-specific viewpoints) in the industrial development 
process, this goal seems to be in the reach. Starting from very high-level system architecture and 
rough timing allocations, the timing verification has to be refined at each step of the project 
(architectural design, detailed design, coding, unit test and software validation phases) down to 
concrete timing measurements on the final delivered system.  

4.11.1 Time4Sys  

To apply the current state of the art of timing behaviour verification techniques, a major problem still 
persists: model-based timing verification techniques, such as scheduling analysis and simulation, are 
often not directly applicable to conceptual design due to the semantic gaps between their respective 
models. Solving this issue is essential to break the remaining walls separating model-based timing 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 52 

 

verification from the development process of real-time embedded systems, and to enable its use in 
the industry. 

Time4Sys is a timing performance framework that fills the semantic gaps between the design models 
of real-time systems and the models of timing verification tools. Time4Sys is composed of two 
building blocks (the Design and the Verification pivot models) as well as a set of transformation rules 
between them. Both pivot models are based on the Time4Sys meta-model. 

Time4Sys uses a subset of the MARTE OMG standard as a basis to represent a synthetic view of the 
system design model that captures all elements, data and properties impacting the system timing 
behaviour and required to perform timing verification (e.g. tasks mapping on processors, 
communication links, execution times, scheduling parameters, etc.). Time4Sys is not limited to the 
use of a particular design modelling tool and environment. It can be connected to various 
environments and languages such as UML, SysML, AADL, or any other proprietary environment (e.g. 
Capella). 

 

 

Figure: Time4Sys: Bridging the gap between design tools and verification tools 

Scheduling analysis and simulation are seldom directly applicable to the conceptual design models in 
general and to Time4Sys Design models in particular due to the semantic mismatch between the 
latter and the variety of analysis and simulation models known from the classical real time systems 
research and represented by academic and commercial tools. Transformation rules are therefore 
required to generate a Time4Sys Verification model preserving the timing behaviour modelled in the 
corresponding Time4Sys Design model, while ensuring the compatibility with the variety of existing 
timing verification tools. After timing verification in the selected tool, results are injected in Time4Sys 
Verification model. Then, they are translated to be compliant with the original design model and 
injected back in Time4Sys Design. 

4.11.2 Tempo Verifier 

Many years of research on timing behavior verification at early design stages have conducted TRT to 
capitalize our experience and developments into a single tool called Tempo Verifier. 
This tool has gained in maturity over the years, taking benefit from our different collaborations 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 53 

 

within Thales GBUs (through Use Cases) but also through projects with partners across Europe and 
direct engagement with academia.  

 

Figure: Tempo Verifier 

Tempo Verifier is a timing verification tool which aims to assist designers and safety engineers of Real 
Time Systems by  

 Early dimensioning of your system 

Quickly try different architectures, mappings and priority assignments, and see the impact on the 
latencies.  

 System development life-cycle follow-up 

As your system is being developed, models can be updated with new measured values to check 
that timing requirements are still respected.  

 Bottleneck identification 

Thanks to worst case latencies computation one is able to find critical situations where deadlines 
are missed. The ability is provided to point out timing problems origin with graphical illustrations. 
The graphical illustrations will assist the designers to correct its architecture and will assist the 
safety engineer to proof the correctness of the architecture according to the time requirements. 

 

Figure: Worst case latency scenario proved 

 

 

 

 

 

 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 54 

 

PLC phases addressed Tools 
Interactions to 

be implemented 

Domains 
interactions 

Identified interaction 
point 

Expected SSP 
benefits 

Use case 

System and software 
Design  

Time4Sys  with 
Art2kitekt 

Early performance 
and safety 
verification 

Performance 
verification 

according to 
performance 

and safety 
requirements 

UC5 

Space 
Multicore 

System and software 
Design 

Time4sys with 
Chess/Papyrus 

Safety and 
Performance analysis 

and exchange of 
performance 

requirements and 
system models 

Tools support 
for verify and to 
exchange safety, 

security and 
performance 

models² 

UC5 

Space 
Multicore 

Test and integration Tempo Verifier 
with Code 

repository and/or 
execution logs 

generate by 
Art2kitekt 

Integration of 
performance multi-
core verification  

Tool support to 
improve Safety, 

Security and 
performance 

properties 

UC5 

Space 
Multicore 

 

4.12 Workflow Automation for Multi-Concern Assurance [AIT] 
Automating workflows across multiple iterations of system development helps to accelerate the 
development flow while avoiding wrong or incomplete process chains caused by human error in the 
case of manually managing the activities. Workflow automation is therefore essential from the 
efficiency perspective as well as with view to a high and controlled quality level.  

AIT has developed the tool WEFACT (Workflow Engine For Analysis, Certification and Test) from a 
web-based test bench in the FP6 IP DECOS towards a multi-purpose workflow engine in Artemis 
project SafeCer. Since then, in Artemis project EMC2, workflows have been extended towards 
security analysis, and an Eclipse RCP-based new version 2 of WEFACT has been developed in ECSEL 
project AMASS. Now in AQUAS, the scope of the tool is extended towards a workflow engine for 
multi-concern assurance, and it is integrated with the AQUAS platform. The following figure shows a 
screenshot of the Eclipse-based WEFACT tool. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 55 

 

 

Figure: Screenshot of the Eclipse-based WEFACT Version 2 

The essential goal of the multi-concern assurance process is to demonstrate in a credible manner 
that the requirements associated with the different quality attributes are fulfilled. This includes the 
argumentation with all assumptions and contexts, and finally the evidences for the arguments. From 
this perspective, multi-concern assurance is the linear superposition of the argumentations for all 
quality attributes.  

One might argue that there are interdependencies between these multiple quality attributes. This is, 
of course, correct for the development processes, but the final design contains all decisions related 
to these attributes, and the final assurance provides separate, distinct evidences for the individual 
quality attributes. It shall be noted, however, that sometimes one evidence can support more than 
one quality attribute. For instance, following the MISRA standard guarantees a good level of safety as 
well as security from the code quality perspective. 

The AQUAS approach allows separate as well combined processes for the individual quality attributes 
under consideration (e.g. safety, security, performance); at least in the case of separate processes, 
after performing them, an interaction point is needed to analyse the trade-offs between the 
potentially contradictory quality attributes treated in the separate parallel processes. 

WEFACT allows to model process flows with defined predecessor-successor dependencies and also 
with forking for enabling parallel processes. WEFACT is based on a database (currently PostgreSQL), 
but for efficiency purposes work products used as inputs or outputs of the process steps can be 
stored in repositories, e.g. svn. The process model can be defined within WEFACT, but also models 
created with EPF (Eclipse process framework) can be imported (and exported from WEFACT again if 
needed). Defining the process steps, which represent the verification of (process or product) 
requirements, means in most cases assigning a tool to perform the process step automatically. 
WEFACT contains an execution process and can automatically start activities, which have not yet 
been performed successfully. After successful completion, WEFACT marks the process step and the 
associated requirement as fulfilled, which represents a particular evidence for the assurance case. 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 56 

 

WEFACT supports different types of process execution, manual and automatic. While manual tools 
require the user to save the results to a specific location, automatic tools return the results which are 
consequently evaluated and stored. The outputs of the executed processes are typically stored in a 
centralized SVN. 

After the evaluation of the Process Result, the status of the executed Process and associated 
Requirements is modified. 

The figure below shows the WEFACT Activity Diagram. 

 

 
Figure: WEFACT Activity Diagram 

 

The above explained capabilities of WEFACT allow to instantiate exactly the process flow structure 
which is needed according to the AQUAS methodology. Error! Reference source not found. shows an 
xample for a part of a multi-concern assurance process. Basically, it includes product as well as 
process assurance. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 57 

 

 

Figure: The multi-concern assurance process 

 
The process is usually an iterative one, therefore the exemplary interaction points in the figure are 
traversed more than once.  
 
In the Industrial Drive use case, WEFACT shall be applied for controlling the workflow of parallel 
assurance processes with tools of different partners. It is intended to follow the recommendations of 
parts of the standard IEC 62443 and combine the processes with the ones needed in conformance 
with IEC 61508. 
 
 
 
 
 
 

Analyses: 

 

 

or 

or 

 

System concept 

Safety & security 
requirements 

Architecture 
& design 

Other functional 
and non-functional 

requirements 

Analysis, 
formal proof, 

tests, contracts, evaluation: 
Requirements w.r.t.  all 

quality attributes 
fulfilled? 

Insert evidences 
in assurance case 

Trade-off 
analysis 

no yes 

iter- 
ations 

Start system 
development 

Separate, e.g. 
HARA + TARA 

Combined, 
e.g. FMVEA 

Trade-off 
analysis 

Interaction Point 

Interaction Point 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 58 

 

PLC phases 
addressed 

Tools Interactions 
to be implemented 

Domains 
interactions 

Identified 
interaction point 

Expected SSP 
benefits 

Use case 

Concept and system 

design 

WEFACT with 

FMVEA, SSDLC, 

Medini Analyzer, 

SAG Performance 

Analysis 

Safety, Security and 

Performance 

Analysis with SAG, 

TP, AMT and AIT  

tools 

and interactions of 

WEFACT with 

partner tools 

WEFACT supporting 

the automated  

workflow of first  

performing Safety, 

Security and 

Performance 

Analyses, and finally 

starting interactions 

between the quality 

attribute-specific 

analysis processes 

UC4 – 

Industrial 

Drive 

 

4.13 Sub-System Hardening of Communication Protocols [TrustPort] 
In Task 4.1 TrustPort will contribute to the specification of co-engineering criteria, indicators and 
requirements for security of communication protocols with aim at sub-system hardening and 
increasing of overall level of security. For ensuring the required availability, reliability and 
recoverability of the systems we plan to use Security Development Life cycle management tool 
(SSLDC). 

In SSDLC tool development we are going to implement requirements of norms and best standards 
(ISO/IEC 62443, NIST FIPS, STIG, OWASP, CIS Benchmarks etc.) and generate security requirements in 
a form of a standardized outputs tailored for individual UCs as inputs into other tools used in co-
engineering processes. 

Trustport’s aim is to define general set of security requirements with respect of safety and 
performance, define threat model for the UCs and create a simple tool for implementing the security 
requirements in a life-cycle of selected UC’s – Secure Software Development Life Cycle tool (SSDLC)- 
and create a CVSS system, scoring severities of potential threats with the aim to suggest it’s 
mitigation. SSDLC approach brings several security aspects into development life cycle and provides: 

• General security controls for information systems for effective risk management; 

• Flexible catalog of security controls to meet the security threats, requirements and 
technologies; 

• Involving security activities into the whole PLC (creating security requirements, verification of 
analysis and design from security point of view, developer guidelines, code reviews, verification of 
security requirements, security assessment); 

• Based on generally accepted standards (NIST, OWASP, Microsoft SDL) to treat the various 
attack vectors; 

• Measurement metrics for security control effectiveness. 

Therefore, SSDLC tool will help to create security, hardening, testing, and validation reporting 
guidelines for selected UCs. The SSDLC tool is an environment for defining the current and future 
security requirements based on variation of standards, recommendations, best practice, and many 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 59 

 

others (i.e., ISO/IEC 27034, ISO/IEC 11073-00103 or the frameworks from HITRUST, NIST or FDA/FTC). 
Connecting the SSDLC with other partners’ tools will improve the automation process of PLC (product 
life cycle). The SSDLC gives a connections and context between security, safety and performance 
parameters. Compared with static security requirements definition, the SSDLC provides simple future 
extension and straight integration to the PLC. The interaction of SSDLC with other partners’ tools and 
integration in the PLC process is displayed in figure below. 

 

Figure: Integration of Trustport’s SSDLC software in the PLC process and interaction with other partners’ tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 60 

 

PLC phases 
addressed 

Tools 
Interactions to 

be implemented 

Domains interactions 

Expected SSP 
benefits 

Use case 
  

Identified interaction 
point 

 Security Validation 

Cryptographic 
algorithm 
validation 
program, 

documentation 
review, 

hardening, 
security audit, 
vulnerability 

testing 

System-level security 
requirements with 

methodology according 
standards and best-

practice. 
Evaluation via 

simulation/measurements 
influence of security 

requirements on 
performance/safety 

Improved 
testing 

(security 
methodology), 
System-level 

security 
agreement, 

and improved 
operational 

faults.  
Immunity 

against attract 
and threads 

Industrial drive 

Technical 
Safety/Performance 

and Security 
Concept 

Standards, best-
practice, SSDLC 

  Improved 
future design 
with focusing 

on synergy 
security and 

performance, 
 testing 

(coverage), 
faster 

commissioning 
and improved 

operational 
diagnostics 

Industrial drive 

  

Security requirements for 
particular domain and 

severity of these 
requirements on 

performance 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 61 

 

5 Conclusion [AMT] 

At this point in the AQUAS project, we started to specify a methodology for co-engineering in the 
product life cycle that supports qualitative and especially quantitative techniques for the analysis and 
assessment of safety, security and performance properties, both in separate and integrated ways. 
For this purpose, it was elaborated to use the Software & Systems Process Engineering Meta-Model 
(SPEM) to define the process model. It was emphasized that this process model should be considered 
as an initial version whose finalization in respect to the definition of the process phases and 
especially of the interaction points will be adopted to the results within the use cases throughout the 
AQUAS project. 

This report has shown furthermore how this general methodology is applied and adopted in the 
different use cases and what interaction points will be addressed. The application, planned 
extensions and integrations of the tools provided by the project partners play an important role and 
have been described in detail, especially the proposed specific functionalities to address foreseen 
challenges of the demonstrator – including interoperability in a phase and across phases with other 
tools and use cases. 

 



AQUAS D4.1 Report on Co-Engineering Process Support 

Version 1.0 

 

 

 

   

 
© AQUAS Consortium 62 

 

6 References [all] 

[IEC 62443] IEC 62443, Industrial communication networks – Network and system security, 2010. 

[IEC 61508] IEC 61508:2010 (ed. 2), Functional safety of electrical/electronic/programmable 
electronic safety-related systems, 2010. 

[IEC 61800] IEC 61800, Adjustable speed electrical power drive systems, 2015. 

[Benevniste, 2012] Benveniste A., Caillaud B., Nickovic D., Passerone R., Raclet J. B., Reinkmeier P., 
Sangiovanni-Vincentelli A., Damm W., Henzinger T., Larsen K.G. Contracts for System Design. 
Research report RR-8147. Inria. November 2012. 

[OCRA]  OCRA: “a command-line tool for the verification of logic-based contract refinement for 
embedded systems”, [Online], Available: https://es-static.fbk.eu/tools/ocra/ [Accessed: July 15, 
2016]. 

[CHESSML]  CHESS Modelling Language: https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf 

[MAST]  MAST: “Modeling and Analysis Suite for Real-Time Applications”, [Online], Available: 
http://mast.unican.es/ [Accessed: July 15, 2016]. 

[FLA]  B. Gallina and E. Sefer, “Towards Safety Risk Assessment of Socio-technical Systems via Failure 
Logic Analysis” submitted to RISK 2014. 

[DEEM] DEEM: “DEpendability Modeling and Evaluation of Multiple Phased Systems”, [Online], 
Available: http://rcl.dsi.unifi.it/projects/tools [Accessed: July 15, 2016]. 

[AMASS] AMASS project: “Architecture-driven, Multi-concern and Seamless Assurance and 
Certification of Cyber-Physical Systems”, [Online], Available: http://www.amass-ecsel.eu/ [Accessed: 
July 15, 2016]. 

[STRIDE] The STRIDE Threat Model, [Online], Available: https://docs.microsoft.com/en-
us/previous-versions/commerce-server/ee823878(v=cs.20) 

 

 

 


