
Managing the Secure Software Development
Radek Fujdiak1,2, Petr Mlynek1,2, Pavel Mrnustik2, Maros Barabas1, Petr Blazek1, Filip Borcik1, and Jiri Misurec1

1Brno University of Technology, Department of Telecommunications, Brno, Czech Republic
Email: {fujdiak,xblaze24,mlynek,misurec,Maros.Barabas,Filip.Borcik}@vutbr.cz

2Trustport, Brno, Czech republic
Email: {Pavel.Mrnustik}@trustport.com

Abstract—Nowadays, software development is a more complex
process than ever was and it faces the challenges, where security
became one of the most crucial. The security issues became
an essential part of software engineers and understanding the
vulnerabilities, risks and others became the everyday bread.
The needs of security in software development resulted in the
creation of the so-called Secure Software Development Life Cycle
(SSDLC). This is a methodological concept included in classical
Software Development Life-Cycle, which is described by five
main phases - analysis, design, implementation (building), testing,
and evaluation (deployment and maintenance). The SSDLC adds
another dimension ensuring the security. We introduce our same
named tool ”Secure Software Development Life-cycle”, which
follows the general idea and goes beyond it. Our tool helps
to create security, hardening, testing, and validation reporting
guidelines for selected use-cases. This tool is an environment for
defining the current and future security requirements based on
the collection of standards, recommendations, best practice, and
many others. Connecting the SSDLC with other tools improves
the general level of automation of the Product Life Cycle (PLC).
The SSDLC gives a connection and context among security,
safety and performance parameters. Compared with static secu-
rity requirements definition, the SSDLC provides simple future
extension and straight integration to the PLC process with non-
or nearly-non personal (human) interaction.

Index Terms—Security, Software development lify cycle, De-
velopment, Software engineering, Management

I. INTRODUCTION

The product development evolved continuously over time
together with the new technological phenomena. Nowadays,
the product life cycle (PLC) or product life cycle (PLC)
management is a business activity of managing, in the most
efficient way, company’s products all the way across their
life cycles; from the very first idea for a product all the way
through until it is retired and disposed off [1]. One of today’s
most important parts of PLC processes is without doubts the
software development. Over the past years, many different
languages including multi-language programming [2], cloud
computing [3], micro-services [4], new hybrid programming
techniques [5] as well as inclusion of new phenomena such
as artificial intelligence [6], machine learning [7], advanced
modeling [8] and simulation [9] have changed the area of
software development. The process became very complex
including multiple stages, which ensures the required quality
of final product [10] (see Fig. 1). Requirement analysis often
contains also requirement gathering, analysis and it is focused
on answering basic questions such as who will use the system,

how the system will be used, what are the inputs/outputs and
others [11]. Design phase includes definition of specific hard-
ware or software requirements together with overall system
architecture design [12]. Development and coding or often
also called as implementation phase contains divided modules
or units, which are one by one implemented to meet the
requirements [13]. Testing phase is actual check whether or not
the requirements are met [14]. Deployment phase starts after
successful testing in previous stage and it is already delivered
to the customers [15]. Operation and maintenance includes
actions, which comes from real usage of the system, which
was not possible to discover during the test phase [16].

Requirement
Analysis

Design Development
Coding

Test Deployment Operation and
Maintenance

Fig. 1. Multiple stages recognized in Software Development Life Cycle
(SDLC).

Nowadays, the software products serve our everyday tasks,
but also ensure the functionality of the most crucial applica-
tions such as hospital systems [17], critical infrastructure [18],
banking systems [19], communication and data infrastructure
[20], transportation [21], and many others. Therefore, the
security became one of the crucial parts of developing reliable
software products [22]. Moreover, the more complex environ-
ment increases also the possibility of software bugs, mistakes,
vulnerabilities, malfunctions and others [23]. In this paper, we
focus on the security of SDLC together with related challenges
and issues. Moreover, we introduce our tool, which helps in the
software product development stages to improve cooperation
and provide clear guidance on security requirements necessary
for creating reliable applications.

The rest of this paper is organized as follows: Section II
introduces the current state of the art for secure software
development life cycle, including the different approaches and
tools. Further, Section III provides description of our tool
dealing with secure software development life cycle. Its main
characteristic follows in Section IV, which summarizes via
examples several use-cases, where our software was used and
how it helps to deal with product life cycle stages. Finally,
Section IV summarizes our conclusions, findings, and suggests
future work.

II. STATE OF THE ART

There has been already high number of software engineering
surveys as reported in [24], which summarized more than 25
survey works connected with software development worldwide
as well as Turkey region in particular. The most interesting
findings are: (i) Most commonly used standards for SDLC are
ISO 9000 and CMMI (Capability Maturity Model Integration);
and (ii) most effort is focused on development. However, a
standardized approach to software engineering is still not a
full warranty of reliable product. Therefore, the Secure SDLC
(SSDLC) come-up and currently there are several different
standards and guidance, which are applicable to it such as
[28]–[32]: OWASP, ISO/IEC (such as 13335, 13849, 21434,
26262, 27002, or 27034), NIST, IEC standards (such as 61580
or 62443), and many others. The Secure SDLC has many
different approaches, but we can summarize it as another layer
to standard SDLC (see Fig. 2).

Requirement
Analysis

Design Development
Coding

Test Deployment Operation and
Maintenance

Risk
Assessment

Threat
Modeling and
Design Review

Static Analysis Security
Testing and

Code Review

Security
Assessment
and Secure

Configuration

Training Response

SSDLC – Reactive ApproachSSDLC – Proactive Approach

Fig. 2. Another layer of SSDLC included in the SDLC model [33]–[36].

The SSDLC adds other tasks to the already current stages
of SDLC. There are two different approaches [37]–[39]: (i)
Proactive approach (Preventing all possible flows and breaches
at the very beginning of the project and implementing so-
lutions in a secure way on required level) and (ii) Reactive
Approach (Ensure security before release and maintain it
through the product’s existence). Proactive approach should
be always considered as it brings several advantages over
reactive approach. The highest benefit of proactive approach
is finding a issues or bugs early in the SDLC processes
(up to development stage) before release. This of course
save valuable resources and time to fix the founded issue.
Moreover, it is also much easier to correct bugs when the
software is not yet implemented. Last but not least, the
considered training of employees or staffs on security practices
is valuable investment, which might solve many issues even
before the project starts. On the other hand, the reactive
approach includes additional testing due to the later stages
of SDLC or even after everything has already been built
(when security needs to be implemented retroactively). This
approach adds another tasks to the developers and testers such
as penetration testing, dynamic code analysis, vulnerability
scanning, incident response plan and others. This approach
adds over the proactive approach possibility to prevent all
possible flows and breaches, which were not discovered or
was overseen in the early stage of SDLC. However, already
complex SDLC became with these even more complex SSDLC
with more tasks, more decision issues, and more management

load. Therefore, the management approach for SSDLC is
required.

III. MANAGING THE SECURE SDLC

The management approach brings another level to the SDLC
and improves it. In particular, our Management SSDLC tool
(mSSDLC) brings:

� general security controls for information systems for
effective risk management;

� flexible catalogue of security controls to meet the security
threats, requirements and technologies;

� measurement metrics for security control effectiveness.
The most important from these points are:
� Integration of security activities into the application de-

velopment process (creation of security requirements,
security design analysis, guidelines for developers, code
review, penetration tests and others).

� Depending on the business criticality of the developed
application, the appropriate security engagement in devel-
opment is made to ensure that security activities do not
unnecessarily disturb the development of the application.

� Based on generally accepted standards and best practice
(NIST FIPS, STIG, Microsoft SDL, CIS Benchmarks) to
treat the various attack vectors with even quality.

� Ability to integrate security activities into different de-
velopmental models (especially Waterfall, Agile devel-
opment).

Using the results from the interviews and documents anal-
ysis, we have developed a secure SDLC integration program,
mSSDLC, including recommended policies, guidelines, and
knowledge transfer. Secure software development has three
elements best practices, process improvements, and metrics of
software development process that focuses on these elements.
The goal is to minimize security-related vulnerabilities in the
design, code, and documentation and to detect and eliminate
vulnerabilities as early as possible in the development life
cycle. The simplified block diagram of mSSDLC is shown
in Fig. 3

Risk
Assessment

Requirement
Analysis

Design Development
Coding

Test Deployment Operation and
Maintenance

Threat
Modeling and
Design Review

Static Analysis Security
Testing and

Code Review

Security
Assessment
and Secure

Configuration

Training Response

Sorted
requirements

Unsorted
requirements,

norms,
standards, ...

Best practices,
known

vulnerabilities,
...

Project team

Best
practices

SSDLC – Reactive ApproachSSDLC – Proactive Approach

Project
control stages

Clear roles &
duties

Project management,
security best practice,

common tools and guidances
or methodologies

Fig. 3. The mSSDLC tool and management approach to SSDLC.

The main added values for SSDLC stages are:

� Requirements and Analysis - Over functional, non-
functional and technological requirements it is also added
security objectives (or requirements).

� Architecture and Design - adding security requirements
(security is part of the architectural design) and creating
security requirements check-list. Moreover, promoting
the visibility of security - Review designs for possible
security issues that means to develop mitigation of all
threats. Finally, adding baseground for risk analysis and
threat modelling, security requirements, privacy require-
ments, architecture and design review for security, design
guidelines for security and threat modelling.

� Development - It helps to minimize the security issues
and vulnerabilities, by adding clear roles, tasks and
controls defined for unit tests and Code-review.

� Testing - During the Verification phase, the tool helps
to ensure that the code meets the security and privacy
tenets established in the previous phases. This is done
through security and privacy testing, and a security push,
which is a team-wide focus on threat model updates, code
review, testing, and thorough documentation reviewing
and editing. A public release privacy review is also
completed during the Verification phase.

� Deployment - After implementation, there is supposed to
be a verification phase for the real devices. Security audit
is an expensive approach and should be made after the
final tests. This might be done by fast security evaluation
based on the quantitative analysis of the final product,
which should be provided by the TP methodology.

Last but not least, the main advantages to the general
SSDLC approach, which the tool offers, are:

� Identifying Security Objectives - To understand key se-
curity objectives and scenarios within the SDLC stages.

� Security Design Guidelines - Create guidelines, specify
security requirements, architecture and design review for
security purposes.

� Threat Models - Identifying threats, attacks and vulner-
abilities for specified information system, with counter-
measures.

� Assessment - Penetration tests, reviews and configuration
audits; simulation of attacks and scenarios to uncover
weaknesses and vulnerabilities during the development
and in deployment.

IV. APPLICATION AREAS

The mSSDLC helps in many different areas with giving
the management context to SSDLC. We are bringing one
particular use-case, where mSSDLC was used with a lesson
learned. The use-case might be described as follows: Early
requirements/design PLC stage of a critical control system
for asynchronous motor, where the most important parameter
was the performance (i.e., fast stop command delivery etc.).
However, the cyber-security standards IEC 62443 brought the
security questions and new requirements, which must be faced
in the PLC stages. The gathered security requirements from the
specification and best practice were included in the mSSDLC

and used for another tasks of SSDLC such as final minimum
security requirements for design phase, trade-off analysis and
decision process. The simplified block-diagram is shown in
Fig. 4.

Security standards,
requirements,

norms, best
practice and other
recommendations

Security
Requirements in
Uniform format

with performance
attributes

TTool (CHESS)
modeling tools

Other PLC
processes

NO

YES(SL SLmin)
 (t tmax)

Excel Sheet

UML/XML

WEFACT
Security
Requirements
Cataloge
and Dev. tool

SSDLC
Security
Requirements
Cataloge
and Dev. tool

Unified
Requirements

Table
(IEC 62443)

Unsorted sources

Excel Sheet

UML/XML

Unified
Requirements

Output

Role, tasks and
responsibilities

definition

? ?

Clear and sorted
requirements into
different use-cases

and applications

Development
cycles, stages, ...

Fig. 4. Simplified block-diagram for selected use-case.

The WEFACT1 was a static database in the project, which
was automatically actualized with defined requirements from
SSDLC and validated. Moreover, the uniform UML/XML
format was used as an input in the simulation and modeling
tools - TTool2 and CHESS3. The minimal security requirement
provided from mSSDLC was used to simulate the impact on
the performance (particularly to get the delay growth). Thanks
to the early-stage analysis via mSSDLC and management
approach the early-stage gets sufficient information for pre-
simulations, which gave enough valid information for the
decision making process and saved time as well as costs.
Without the mSSDLC, the whole early-stage pre-simulation
would not be possible and the right decision would be very
hard to make with high probability to make wrong decision,
which would increase future costs and time for application
development.

V. CONCLUSION

We bring the very current state of the art for SDLC
(Software Development Life Cycle) as well as for SSDLC
(Secure Software Development Life Cycle). We introduce both
approaches, highlight the challenges and bring-up the new
topic of management approach in the SSDLC together with
introduction of our mSSDLC tool. The whole development
is unfortunately not anymore just an engineering work. The
project management plays crucial role and helps to move
forward in the right direction through the development life-
cycle. As mentioned, there are different teams involved with
many decisions, which need to be made thought the whole
SDLC, before the product hits the market [25]. The early
stage of SDLC is about creating requirements, which must
be fulfilled by the final product and even at this early stage
we must fight the different areas of requirements, which

1WEFACT is Workflow Engine for Analysis, Certification and Test, which
is commonly used in the industrial use-cases.

2TTool is SysML modeling tool, which implements Security and Perfor-
mance analysis for many different applications.

3CHESS is Composition with Guarantees for High-integrity Embedded
Software Components Assembly and it provides a model-driven, component-
based methodology.

