

Deliverable 3.2

Combined Safety, Security and Performance

Analysis and Assessment Techniques -

Preliminary

This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under
grant agreement No 737475. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and
innovation programme and Spain, France, United Kingdom, Austria, Italy, Czech Republic, Germany.

The author is solely responsible for its content, it does not represent the opinion of the European Community and the
Community is not responsible for any use that might be made of data appearing therein.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 2

DISSEMINATION LEVEL

 PU Public
 CO Confidential, only for members of the consortium (including the Commission Services)

COVER AND CONTROL PAGE OF DOCUMENT

Project Acronym: AQUAS

Project Full Name: Aggregated Quality Assurance in Systems

Grant Agreement No.: 737475

Programme ICT-1: Cyber-Physical-Systems

Instrument: Research & innovation action

Start date of project: 01.05.2017

Duration: 36 months

Deliverable No.: D3.2

Document name: Combined Safety, Security and Performance Analysis and
Assessment Techniques - Preliminary

Work Package WP3

Associated Task T3.2

Nature 1 R

Dissemination Level 2 PU

Version: 2.0

Actual Submission Date: 10-05-2019

Contractual Submission Date 10-05-2019

Editor:
Institution:
E-mail:

Marwa Gadala, Lorenzo Strigini
City, University of London
{Marwa.Gadala,L.Strigini}@city.ac.uk

1 R=Report, DEC= Websites, patents filling, etc., O=Other
2 PU=Public, CO=Confidential, only for members of the consortium (including the Commission
Services)

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 3

Change Control

Document History

Version Date Change History Author(s) Organisation(s)

1.0 First version for
internal review

Lead editors:
Marwa Gadala, Lorenzo Strigini

City

 Authors:
Abel Balbis, Alejandra Ruiz, Antonio
Gonzalez, Asma Smaoui, Bernhard
Fischer, Chokri Mraidha, Emmanuel
Vaumorin, Isaac Moreno Asenjo,
Jabier Martinez Perdiguero, Javier
Puelles, Jean Godot
John Favaro, Jose Manuel Sanchez,
Jose Cordero, Ken Sharman,
Korbinian Christl, Lorenzo Strigini,
Ludovic Apvrille, Marc Born, Marc
Sango, Mario Winkler, Martin
Matschnig, Marwa Gadala,
Maysam Zoor, Olga Dedi, Pavel
Mrnustik, Peter Popov, Petr
Mlynek, Radek Fujdiak, Ricardo
Ruiz, Robert Kaiser, Rupert Schlick,
Sebastian Chlup, Sebastian Hunt,
Shuai Li, Stefano Puri, Thomas
Gruber, Vittoriano Muttillo,
Vladimir Stankovic

City
ITI
AIT
Trustport
MTTP
RGB
Intecs
HSRM
All4Tec
Tecnalia
Magillem
Integrasys
AMT
CEA
Siemens
Thales
Univaq

1.1 2 May 2019 Second version
for internal
review

ditto ditto

1.2 2 May 2019 For internal
review, updates
to sections 2-3

ditto ditto

2.0. 10 May
2019

Final,
integrated
chapter 5

ditto ditto

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 4

Distribution List

Date Issue Group

11/04/2019 Version for review John.Favaro@intecs.it

10/05/2019 Final version

EC

all@aquas-project.eu

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 5

TABLE	OF	CONTENTS	

LIST	OF	FIGURES	..	8

LIST	OF	TABLES	...	10

EXECUTIVE	SUMMARY	..	11

1 INTRODUCTION	..	13

2 GENERIC	REQUIREMENTS	AND	TERMINOLOGY	FOR	"AQUAS	METHODOLOGY"	15
2.1 Generic requirements for an AQUAS Methodology .. 15

2.1.1 Requirements on interaction points and combined analyses ... 16
2.1.2 Interaction points and combined analyses through stages of the lifecycle 17
2.1.3 Differentiating between SSP requirements .. 21
2.1.4 Tooling for combined analyses .. 22
2.1.5 Where in the product lifecycle interaction points should occur ... 22

2.2 Common terminology: The Product Lifecycle Conceptual Model.. 23
2.2.1 The 4-model structure of the AQUAS conceptual model .. 23
2.2.2 Product Life-Cycle Model .. 24
2.2.3 The Product and Organization model .. 27
2.2.4 Quality Analysis model .. 30
2.2.5 Co-Engineering model ... 32
2.2.6 Traceability across the PLC .. 33

3 TOOLING	 REQUIREMENTS	 FOR	 SUPPORTING	 INTERACTION	 POINTS	 AND	
TRACEABILITY	...	34

3.1 General scenario for supporting IPs.. 34
3.2 Typical expected needs .. 35
3.3 Specific usage requirements for tools supporting Interaction Points .. 36
3.4 Requirements on the use flow ... 38
3.5 Requirements on the use model .. 39

3.5.1 Use model-Step 1: Files collection ... 39
3.5.2 Use model-Step 2: Fragments collection ... 39
3.5.3 Use model-Step 3: Trade-off description ... 40
3.5.4 Use model-Step 4: Action plan description .. 40

3.6 Conclusion .. 40

4 METHODS	FOR	COMBINED	ANALYSES	...	41
4.1 Hazard and Operability Analysis for identifying safety/security interactions at
requirement/conceptual design stage (Medical Use Case Example) ... 41

4.1.1 Aim of the example... 41
4.1.2 Method .. 42
4.1.3 Results .. 42
4.1.4 Lessons Learned ... 44
4.1.5 Further Developments .. 45

4.2 Combined Hazard Analysis and Threat Assessment Including a Threat Identification Based on Assets
(Medical Use Case Example) ... 45

4.2.1 Aim... 45
4.2.2 Method .. 45
4.2.3 Results .. 49

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 6

4.2.4 Lessons Learned ... 51
4.3 Combined Analysis of Trade-Offs Regarding User Authentication (Medical Use Case Example) 51

4.3.1 Aim... 52
4.3.2 Method .. 52
4.3.3 Results .. 52
4.3.4 Lessons Learned ... 56
4.3.5 Further Developments .. 56
4.3.6 Further Details .. 57

4.4 Probabilistic Analysis of Performance-Security Trade-Offs via SANs (ATM Use Case Example) 57
4.4.1 Aim... 58
4.4.2 Method .. 58
4.4.3 Results .. 60
4.4.4 Lessons Learned ... 60
4.4.5 Further Developments .. 61
4.4.6 Further Details .. 61

4.5 Analysis of Safety-Security-Performance Trade-Offs via SANs (Industrial Drive Use Case Example) ... 61
4.5.1 Aim... 63
4.5.2 Method .. 64
4.5.3 Results .. 65
4.5.4 Lessons Learned ... 66
4.5.5 Further Developments .. 66
4.5.6 Further Details on the Model .. 67

4.6 Combined Analysis of Safety and Performance to Support Design Space Exploration and Technical
Solutions Comparison (Space Use Case Example) ... 67

4.6.1 Aim... 67
4.6.2 Method .. 69
4.6.3 Results .. 70
4.6.4 Lessons Learned ... 72
4.6.5 Further Developments .. 72
4.6.6 Further Details .. 72

4.7 Combined Analysis of Security and Performance to Support the Product Lifecycle using SSDLC and
TTool (Industrial Drive Use Case Example) .. 73

4.7.1 Aim... 73
4.7.2 Method .. 73
4.7.3 Results .. 74
4.7.4 Lessons Learned ... 77
4.7.5 Further Developments .. 77

4.8 Failure Modes, Vulnerabilities and Effect Analysis (FMVEA) (Industrial Drive Use Case Example) 78
4.8.1 Aim... 78
4.8.2 Method .. 78
4.8.3 Results .. 80
4.8.4 Lessons Learned ... 81
4.8.5 Further Developments .. 81

4.9 Combined Analysis of Safety, Security and Performance in the Design Stage (Space Use Case
Example) ... 81

4.9.1 Aim of Use Case Example .. 82
4.9.2 Method .. 82
4.9.3 Results .. 83
4.9.4 Lessons Learned ... 85
4.9.5 Further Developments .. 85

4.10 Translation Validation: Checking C Code Conformity (Rail Use Case Example) 86

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 7

4.10.1 Aim... 86
4.10.2 Method: Verification of conformity of Generated C code .. 87
4.10.3 Results .. 88
4.10.4 Lessons Learned ... 90

4.11 Safety and Performance Analysis in Multiprocessor Task Scheduling (Space Use Case Example) 91
4.11.1 Aim... 91
4.11.2 Method .. 91
4.11.3 Results .. 92
4.11.4 Lessons Learned ... 93

4.12 Efficient Formal Verification of System Software Using Ada 2012 and SPARK 2014 (Space Use Case
Example) ... 93

4.12.1 Aim in the Use Case .. 94
4.12.2 Method .. 94
4.12.3 Results .. 95
4.12.4 Lessons Learned ... 97
4.12.5 Further Developments .. 97

4.13 Combined Model-Based Testing for Multiple Concerns (ATM Use Case Example) 98
4.13.1 Aim... 98
4.13.2 Method .. 99
4.13.3 Results .. 101
4.13.4 Lessons Learned ... 102
4.13.5 Further Developments .. 103

5 INTERACTION	POINT	PLANNING	IN	THE	USE	CASES..	104
5.1 IP Plan for the The ATM Use Case (UC1) ... 104
5.2 IP Plan for the Medical Devices Use Case (UC2) .. 108
5.3 IP Plan for the Industrial Drive Use Case (UC4) ... 113
5.4 IP Plan for the Space Multicore Architectures Use Case (UC5) .. 117

6 CONCLUSIONS	...	120

7 GLOSSARY	AND	ABBREVIATIONS	..	122

REFERENCES	..	124

LIST	OF	ANNEXES	..	125

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 8

List of Figures
Figure 2-1: Stages of refinement. Analyses and discussions that involve two or more aspects among
Safety, Security and Performance are the AQUAS Interaction Points .. 18
Figure 2-2: Fragment of activity diagram representing detailed stages of refinement for a possible
concrete PLC .. 19
Figure 2-3: A possible concrete requirement production stage, including the subdivision of activities
between different specialisms.. 20
Figure 2-4: A possible interaction point following the requirement elicitation in Figure 2-3. 21
Figure 2-5: The 4-model structure of the AQUAS conceptual model ... 23
Figure 2-6: Layered representation of the analyses .. 24
Figure 2-7: SEBoK core concepts and their relevance to the PLC ... 25
Figure 2-8: The Product Life Cycle (PLC) model ... 26
Figure 2-9: Relation between the PLC model and the product model ... 27
Figure 2-10: ISO/IEC/IEEE 42010 Architecture Conceptual Model ... 28
Figure 2-11: SEBoK core concepts related to work products and organization 29
Figure 2-12: The product and organization model .. 30
Figure 2-13: Relation between the PLC model and the product and organization model................... 30
Figure 2-14: SEBoK core concepts related to product quality .. 31
Figure 2-15: Relation between the PLC model, the product and organization model, and the quality
analysis model ... 32
Figure 2-16: Relation between the PLC model, the product and organization model, the quality analysis
model, and the co-engineering model .. 33
Figure 3-1: Use flow of an interaction point.. 38
Figure 3-2: File collection in the IP. Note: "IP project" is, following ECLIPSE terminology, a tool-defined
entity in which the references and other information created for the IP are stored. 39
Figure 3-3: Fragments collections in the IP ... 40
Figure 3-4: Trade off description .. 40
Figure 3-5: Action plan description ... 40
Figure 4-1: Link Between HAZOP Analysis and other Analyses by UC2 Partners in the Requirements
Phase ... 44
Figure 4-2: Initiating a new function in medini analyze ... 46
Figure 4-3: Applying HAZOP analysis in medini analyze... 46
Figure 4-4: Identifying malfunctions in medini analyze ... 47
Figure 4-5: Asset Identification in medini analyze ... 47
Figure 4-6: Threat derivation from assets ... 47
Figure 4-7: Threat assessment table in medini analyze ... 48
Figure 4-8: Imported process HAZOP and derived attacks .. 48
Figure 4-9: Linking attack scenarios to threats .. 49
Figure 4-10: Identified hazards, threats, attacks and the relations between them 50
Figure 4-11: Relations view in medini analyze .. 50
Figure 4-12: Relationship Between the Various Factors in the Decision to Implement Authentication
 .. 54
Figure 4-13: The SAN “composed” model of the ATM demonstrator. ... 59
Figure 4-14: The SAN “composed” model of the “industrial drive” demonstrator. 64
Figure 4-15: Hepsycode Methodology .. 69
Figure 4-16: HEPSYCODE Process Network Model .. 70

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 9

Figure 4-17: Hepsycode AQUAS Version 1 (No Security) - LEFT, Hepsycode AQUAS Version 1 (with
Security) - RIGHT .. 71
Figure 4-18: Hepsycode Performance/Safety Analysis - LEFT, Hepsycode Performance/Safety/Security
Analysis - RIGHT ... 72
Figure 4-19: Combined Analysis of Security and Performance to Support the Product Lifecycle using
SSDLC and TTool .. 74
Figure 4-20: TTool – results security algorithm vs. performance ... 74
Figure 4-21: Inference analysis using SSDLC and TTool ... 77
Figure 4-22: System-Model .. 79
Figure 4-23: Defined Rules ... 79
Figure 4-24: Analyzer Results ... 80
Figure 4-25: Results shown in the System Model .. 80
Figure 4-26: Description of the interactions.. 83
Figure 4-27: Software architecture ... 83
Figure 4-28: Schedulability analysis results ... 84
Figure 4-29: Example and part of a safety-security tree .. 84
Figure 4-30: Example of a tree exported in OpenPSA format with tags on the nodes 85
Figure 4-31: Output of Concept-aware analysis tool ... 85
Figure 4-32: Hierarchical approach ... 95
Figure 4-33: Distribution of efforts within implementation and project coordination 96
Figure 4-34: Method overview – combined model-based testing for multiple concerns.................... 99
Figure 4-35: Example state machine from UC1 ... 102
Figure 5-1: PLC for Use Case 1, with interaction points ... 104
Figure 5-2: PLC for the Industrial Drive use case, with interaction points .. 113

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 10

List of Tables
Table 4-1: Example row from the HAZOP analysis... 43
Table 4-2: Example row from the qualitative trade-off analysis .. 53
Table 4-3: Outline analysis of security viewpoint – likelihood of various threats 56
Table 4-4: Probability distribution of the message delivery times (PDMRT) 60
Table 4-5: Sensitivity analysis results of the effect of cleansing interval on model behaviour with client
only attacks. ... 65
Table 4-6: Results - Computation time according to different security levels and algorithms 74
Table 4-7: Performance in terms of cycles depending on the clock divider 76
Table 4-8: formal B source algorithm.. 89
Table 4-9: C translation .. 89
Table 4-10: ACSL translation ... 89
Table 4-11: Validation report ... 90
Table 4-12: Bin packaging thread allocation results .. 93
Table 5-1: Interaction Points of ATM use case. ... 106
Table 5-2 : Interaction Points of Medical use case .. 109
Table 5-3: Interaction Points of Industrial Drive use case. ... 114
Table 5-4 Interaction Points of Space use case. .. 118
Table 7-1: AQUAS-specific terms and AQUAS-specific word uses .. 122
Table 7-2: Abbreviations used in the text ... 122

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 11

Executive Summary
This deliverable, D3.2, reports progress in AQUAS Workpackage 3, Methodology.

AQUAS aims at improving how the non-functional requirements of safety, security, performance (SSP)
are dealt with during the product lifecycle for embedded computer systems, both in the sense of
reducing the risk of surprises – unsatisfied requirements or unsatisfactory trade-offs between
conflicting requirements – late in the lifecycle, when they would be more expensive; and of achieving
this risk reduction in a cost-effective way.

The AQUAS approach to methodology improvement is based on (a) applying methods (where possible
supported by software tools) for combined analyses of project artefacts from the viewpoints of safety,
security, performance (and possibly other non-functional requirements); (b) limiting the overhead cost
of these combined analyses by only applying them at a limited number of points in the product
lifecycle, called interaction points, where decisions can thus be taken about any need for rework, for
agreeing trade-offs between conflicting requirements, or prescriptions for later steps in the PLC, e.g.,
more detailed requirements or further analyses that will be needed.

According to the AQUAS workplan, the purpose of D3.2 is to "demonstrate, through example
applications, the application of combined analysis and assessment of safety, security and performance,
that is, how the 'interaction point' concept can be implemented in practice with the techniques
considered" on small scale examples suitable for demonstrating the methods, so as to support their
application in the use cases.

In addition to this specification, the present document takes into account the recommendations from
the first review of AQUAS, which asked for an "initial high-level SSP co-engineering methodology
description" to help harmonize work in the project. Therefore, we have added in this document more
detail to the introduction to the AQUAS approach previously provided in D3.1, including a "PLC
conceptual model", which establishes a terminology for the essential components of the AQUAS
approach, and preliminary requirements for tools supporting documentation of interaction points and
traceability of information and decisions between them.

The bulk of D3.2 (Chapter 4) is the set of descriptions of methods with which AQUAS is experimenting,
including: methods for hazards and risk analysis addressing the effects of both accidental events and
malicious attacks, and the effects of defense mechanisms introduced against either; extensions of
standard design analysis techniques, like fault tree analysis, to combined analysis; probabilistic
modelling to allow quantitative predictions of the implications of design decisions on risk; tool-
supported techniques for checking that software-hardware architecture designs satisfy execution
performance requirements; and verification techniques (formal verification as well as testing) to detect
problems in the implemented systems. These descriptions of analysis techniques are written as stand-
alone items that can be used for reference within AQUAS; they could evolve into supportive annexes
in a standard for co-engineering of quality attributes.

All in all, at this stage the trials of these techniques have been successful: no major obstacles have
been encountered in applying them, and these techniques have helped to detect interdependencies
between the SSP requirements and design decisions driven by them, to trace possible hazards and
their causes, etc. Although the examples documented here are limited in scope, for the sake of
readability, most of them are already being extended to address broader subsets of the demonstrator
systems. The activities under way now in each demonstrator will lead to further interaction points, so
that it will be possible also to assess the effectiveness of the approach and of the specific techniques

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 12

used in propagating necessary information about SSP interdependence along the PLC, and to learn
some lessons about the appropriate placement of interaction points along the PLC.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 13

1 Introduction
The AQUAS project aims to promote effective and practical methodological advances for the co-
engineering of security, safety, performance of embedded computer systems.

Workpackage 3 in the project pursues these goals through the definition of methods and approaches
for the combined analysis and assessment of safety, security and performance, at "interaction points"
in the co-engineering process.

We recall the two-fold methodological problem that motivates the AQUAS project, and the approach
that AQUAS is trialling:

1. on the one hand, system and subsystem attributes like safety, security, performance are
interdependent: a developer or assessor who only focused on one of these attributes at a time
would risk leaving unresolved conflicts, e.g., it could happen that once the design has been
engineered to achieve satisfactory security, the mechanisms introduced for this purpose violate
some requirement concerning safety. So, separate processes for enforcing these different
requirements risk costly reworks during development, or worse, accidents in operation, or
expensive recalls.
On the other hand, it may happen that trying to separately provide safety and security features
produces unnecessarily costly solutions – e.g., through not noticing that memory protection
enforced for safety reasons are adequate to satisfy a security requirement as well.
So, the AQUAS approach includes methods for combined analyses of these various interdependent
attributes, to assess whether a system satisfies its requirements from these diverse viewpoints
and/or to assist design decisions. Many partners in the AQUAS consortium are tool developers
whose products are being improved to form toolsets that support these analyses;

2. on the other hand, analyses that encompass these various viewpoints can prove hard and time-
consuming: because these analyses may be inherently complex, and because they require
interaction between specialists who typically belong to different cultures. E.g., the specialist
knowledge and skills required to analyze or enhance a system or system design from the viewpoint
of security typically belong to different specialists from those dealing with safety.
The AQUAS approach is to limit this expenditure of effort by restricting these combined analyses
to specific points in the lifecycle (called "interaction points"); this is in line with proposals that have
emerged in industrial environments (cf e.g. SAE J3061 Cybersecurity Guidebook).

Deliverable D3.2 is specified in the project workplan as follows:

This deliverable will demonstrate, through example applications, the application of combined analysis
and assessment of safety, security and performance, that is, how the “interaction point” concept can
be implemented in practice with the techniques considered. The examples will be on small systems (e.g.
parts of the demonstrators), suitable for demonstrating the methods so as to support application in the
use cases. Each planned interaction point (one or more per use case) will be specified by collaboration
of the one or more WP3 partners that provide the techniques, in general formats harmonised, as far as
feasible, by consensus with the use case owners under coordination by City.

In addition to this specification, the present document takes into account the recommendations from
the first review of AQUAS in June 2018. The reviewers asked for an "initial high-level SSP co-
engineering methodology description" to help harmonize work in the project. This has been done,
within the constraints of the planned bottom-up approach of AQUAS: to this end we have included

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 14

(i) a "PLC conceptual model", developed by Tecnalia (the PLC goal leader) by interaction with WP3
partners and the various demonstrators; (ii) preliminary results from the focus group of tool
developers who have studied the tooling requirements for documentation of interaction points and
traceability of information between them.

The AQUAS workplan calls for experimentation-driven innovation: the five demonstrators experiment
with applying methodological advances in a set of concrete, diverse development projects. The goal
for the end of the project is to gain and report experience in the application of the AQUAS approach.
The demonstrators involve companies of various sizes and backgrounds and different industrial sectors
(and thus, not least, different applicable standards and different regulatory agencies) so that from this
learning exercise AQUAS plans to extract not only lessons useful to the individual companies and
sectors, but also to be able to extract what is common and can be called an AQUAS "methodology".

So, rather than a single universal, detailed and prescriptive process, the methodology emerging from
the project is expected to consist of useful recommendations for applying the AQUAS approach, and
especially lessons learned in more than one demonstrator, and thus validated, to the extent that is
feasible. This does not preclude (a) some demonstrators producing more formal results, like
prescriptive process manuals to be proposed for more extensive in-house piloting and validation;
(b) AQUAS producing advice for standardization committees based on the lessons learned (and/or
indeed on the problems that motivate AQUAS and their refined understanding derived from AQUAS
experimentation. Standard-making inevitably lags behind awareness of problems).

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 15

2 Generic Requirements and Terminology for "AQUAS Methodology"
Contributors: Tecnalia and City

The methodological advances expected from AQUAS are a set of lessons learned that will help both
the project partners and the industry in general to improve their processes for managing safety,
security, performance of embedded systems, making them less surprise-prone and, if possible, more
cost-effective by better exploiting synergies between solutions for safety, security and performance.
These lessons concern both the use of tools and techniques, and the timing and organization of the
"interaction points" when combined analyses are performed that take into account the various "non-
functional" requirements.

The project takes a bottom-up, empirically driven approach to methodological development. However,
to facilitate this development during the AQUAS project, exchange of experience between the
demonstrators, and harmonization of the final results, this chapter includes additional information and
terminology and an initial high-level description of a SSP co-engineering methodology, in the form of
a “PLC conceptual model”.

The concept of interaction point was discussed extensively in D3.1 (Sections 4.1-4.6) and a preliminary
planning of interaction points in the demonstrators was provided, described according to a common
template. Without repeating that discussion, we recall here that we call "interaction point" "both an
activity and the point in a product life cycle (PLC) at which it occurs. The activity is "interaction" in that:

a) experts in the various aspects of the system and its properties interact, e.g. security and safety
experts;

b) their analyses are combined in some way, that may be anywhere in the range from informal
discussion and mutual critique to using mathematical models, typically supported by tools, to
assess various measures of interest for alternative design options, or even a single, summary
measure to be optimized (e.g., probability of an undesired event);

c) the need for changes or decisions may be recognized that require an integrated view, e.g.
because of inevitable trade-offs between desirable properties, and these trade-offs are
discussed between the various experts to produce recommendations/decisions.

About the need for interaction between specialist activities concerning e.g. security and safety
analyses, and of these with the main development, validation or operation effort, this document, like
most AQUAS activity, focuses on the technical concerns about interactions between the requirements
produced by different specialisms and between the measures adopted to satisfy them. We do note
that interaction between these activities would be required for various reasons even without these
technical challenges. For instance, project scheduling has to co-ordinate the various analyses and
development steps for efficiency, avoiding e.g. unnecessary waits and risk of needing rework due to
late analyses. However, focus on the technical challenges is part of the AQUAS workplan and is justified
by the difficulties they have been experienced to present to industry.

2.1 Generic requirements for an AQUAS Methodology
As development proceeds through stages of refinement from initial requirements and conceptual
design through increasingly detailed design and implementation, and later, through the right branch
of a V model, with verification and validation that the implementation matches progressively higher-
level requirements, the AQUAS approach assumes that at certain points in the process – interaction
points - "combined analyses" are applied, which consider all the non-functional requirements. This is

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 16

especially important in the refinement process – the left-hand branch of the V – to ensure that the
product at its current state of development satisfies the set of requirements developed, for the whole
system and for its component parts, in the previous steps, and to take early corrective action as
needed.

2.1.1 Requirements on interaction points and combined analyses
In any development process, some verification is needed after each step of refinement. E.g., a system
description version Si includes, for a certain software component, just a specification; after the
specification for that software component is turned into software code (a step of refinement), we have
a system description Si+1. It is required that the system produced by refinement, Si+1 (the one that
contains the code instead of its specification) still satisfies the properties specified for the previous
version, Si. This verification implies:

1. verifying that the specific software code implements its specification

2. verifying that the refined system matches all the requirements defined for the system before
refinement. The concern is that this is not necessarily guaranteed by the verification step in point
1 above.

To clarify point 2 above, suppose that Si was accompanied by a set of "non-functional" requirements
for the whole system or its subsystems/components. It may happen that the system at step of
refinement Si appeared to satisfy all these requirements.3 This may be because at that level of detail,
some implementation matters were still undecided, which could determine whether that requirement
would be really satisfied; and/or because some potential way that requirements could be violated had
not been foreseen; and/or the required analyses could not be performed before this refinement (e.g.,
whether certain requirements are satisfied depends on implementation details previously unavailable;
the execution time of certain software components, the security characteristics of certain libraries). In
addition, analyses at the level of refinement of Si+1 may serendipitously discover potential problems
(e.g., security threats, hazards, performance problems) and thus requirements that ought to have
been, but were not, identified earlier.

Thus, the ideal requirement for the combined analyses at an interaction point is that they verify that
all real requirements (not just those formally stated) for the system and for its parts are satisfied. This
is "ideal" in that complete knowledge is unattainable in principle, but in practical terms the
requirements on these analyses can be stated as:

• the analyses must be such as to ensure, collectively, that a set of previously specified
requirements are still satisfied; one may aim to verify this for the whole set of requirements,
or just for a subset whose satisfaction – it is expected – may have been affected by the
previous step[s] of refinement

3 We take a broad view of what constitutes "requirements". Requirements can take many forms, and
the boundary between "functional" and "non-functional" may be fuzzy; we take the broadest view:
e.g., a requirement can be that a subsystem's architecture includes the feature that a standard
recommends for Safety integrity level 4; or that that a subsystem exhibits a probability of failure on
demand no greater than 10-4; or that a communication link be encrypted with 256-bit key AES.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 17

• and/or the analyses must be suitable for revealing either unexpected problems (violations of
written or unwritten requirements) (or unexpected opportunities to change the architecture
in such a way that a single architectural mechanism can satisfy multiple SSP requirements) that
can be expected to become visible at this stage of refinement.

2.1.2 Interaction points and combined analyses through stages of the lifecycle
Figure 2-1 gives a coarse-level description of how this refinement process proceeds between stages of
the lifecycle, irrespective of what kinds of non-functional requirements are involved. At stage i+1, a
certain amount of "refinement" takes place, as stated above, e.g., moving from coarse-grain design to
detailed design of some system part, or from software specifications to code for some software
component. Analyses follow, to check that these refinements are "OK": that all requirements inherited
are satisfied. There are three possible outcomes:

• all requirements are still satisfied, and the artefacts produced (the "system description",
version Si+1) can be passed on the next stage of refinement;

• some requirements are not satisfied, but it is judged that some change to the last
refinements made can satisfy them, e.g., selecting faster chip or optimizing some code,
will satisfy them. Then an iteration occurs within the same stage: these changes are
applied and the analyses are repeated. We note that sometimes an iteration may be
requested because the analyses reveal that the requirements are satisfied, but a better
solution is nonetheless possible;

• some requirements are not satisfied, and it is decided that the requirements inherited
from stage Si cannot be satisfied. It is necessary to go back to the previous stage where
those requirements were generated: e.g., some required functionality must be
abandoned, or a longer response time must be allowed.

In the AQUAS scenario, the analyses may deal with the various aspects of security, safety and
performance. If requirements inherited at a stage cannot be satisfied, the decisions on new trade-offs
may be for instance to relax a requirement on strength of encryption, or abandoning some
functionality, or allowing higher cost or power consumption.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 18

Figure 2-1: Stages of refinement. Analyses and discussions that involve two or more aspects among Safety, Security and

Performance are the AQUAS Interaction Points

Figure 2-2 shows an example of concrete activities and artefacts involved in a possible example of PLC,
but still without discriminating between activities and artefacts belonging to different specialisms, like
safety and security.

Figure 2-3 and Figure 2-4, by contrast, show a possible organization of requirement elicitation and
validation phases managed as separate specialist activities, and the interaction point appears in the
Co-engineering part of Figure 2-4.

Stage i+1 of development

Stage i of development

analyses OK?

Yes

No, different
refinement needed

No,requirements
cannot be
satisfied

Stage i+2 of development

discussion, decision
on new tradeoffs

discussion, decision
on new tradeoffs

OK?
Yes

refinement producing
system description Si
with requirements on
system and its parts

analyses

refinement
producing system
description Si+1 with
requirements on
system and its parts

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 19

Figure 2-2: Fragment of activity diagram representing detailed stages of refinement for a possible concrete PLC

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 20

Figure 2-3: A possible concrete requirement production stage, including the subdivision of activities between different

specialisms.

Requirements Engineering Activity Diagram

Se
cu

rit
y

En
gi

ne
er

in
g

System Security Requirements

Pe
rfo

rm
an

ce
 E

ng
in

ee
rin

g

System Performance Requirements

Performance
RequirementsElicitations

Security Requirements
Elicitation

Sa
fe

ty
 E

ng
in

ee
rin

g

System Safety Requirements

Safety Requirements
Elicitation

Sy
st

em
 E

ng
in

ee
rin

g

Requirements
Elicitation Completed

System Functional
Requirements

Functional
Requirements Elicitation

Requirements
Engineering Start

Visual Paradigm Professional(ptp(City University London))

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 21

Figure 2-4: A possible interaction point following the requirement elicitation in Figure 2-3.

2.1.3 Differentiating between SSP requirements
The requirements whose satisfaction must be verified are often labelled as being "security
requirements", "safety requirements", "performance requirements", etc. We must acknowledge that
these labels are not mutually exclusive and thus this terminology can be somewhat misleading. For
instance, security properties have to do with what a malevolent adversary might achieve through the
system; safety properties address ways the system could cause harm; and a reasonable goal for an
adversary is actually to use the system to cause harm: so a requirement for system safety dictates
requirements for system security. More complex dependencies are in fact common. It is common, for
instance, that a safety requirement at system level demands that certain computations be performed
within acceptable response times or throughput requirements (performance requirements); therefore,
a security requirement is that adversaries must not be able to cause violations of these performance
requirements; and once security mechanisms are added for this purpose, there will be further non-
functional requirements of reliability and performance of these mechanisms, to give sufficient
assurance that they will both perform their security functions and not themselves become a cause of

SSP analysis (feasibility) Activity Diagram

Sy
st

em
 E

ng
in

ee
rin

g
Sa

fe
ty

 E
ng

in
ee

rin
g

Se
cu

rit
y

En
gi

ne
er

in
g

Pe
rfo

rm
an

ce
 E

ng
in

ee
rin

g
Co

-E
ng

in
ee

rin
g

Requirements
Elicitation Completed

System Safety
Requirements

System Security
Requirements

System Performance
Requirements

Functional
Requirements

Interaction Point (Requirements Analysis)

Method X of Combined Analysis
(e.g. "interference analysis")

Method Y of Combined Analysis
(e.g. based on TTool)

Method X Outcome
(e.g. a document)

Method Y Outcome
(e.g. a document)

Method Z of Combined Analysis
(e.g. a SAN SSP model)

Method Z outcome
(e.g. a document)

Initial Architecture

Subsystem Safety
Related Requirements

Subsystem Security
Requirements

Subsystem Performance
Requirements

Analysis Complete

Visual Paradigm Professional(ptp(City University London))

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 22

under-performance that affects safety. This interconnection between the various "non-functional"
properties of a system and of its parts is indeed a basic motivation for the AQUAS project.

Nonetheless, requirements, and the activities that they trigger, can be labelled as, e.g., 'security'
requirements on the basis of their being so labelled in standards and guidelines; or because the work
they require is work by security specialists. In these cases, the labelling applied is not meant to suggest
that these qualities are separate and independent from other qualities like safety or performance, but
to document organizational aspects of the PLC.

2.1.4 Tooling for combined analyses
AQUAS is experimenting with various tools and techniques for combined analyses. However, it is
expected that AQUAS methodological conclusions will set no constraints on which tools and
techniques may be used for any stage of combined analysis: this freedom is required because:

• there are many suitable choices. In AQUAS itself, the set of tools and techniques being trialled
includes alternative means of pursuing the same goals; alternative tooling options exist for the
whole PLC;

• each company may have an established set of tools and techniques, dictated by its
regulatory/standardization/certification regime, or by previous investment in software and
training, and would want to extend this set to support co-engineering in a way that takes
advantage of the previous investment, so will take into account factors like similarities of technical
languages used, and of tool interfaces, tool interoperability, etc.

On the other hand, tool vendors that aim to support the AQUAS approach will aim to create a toolset
of interoperable tools. Such efforts are indeed under way in WP4.

2.1.5 Where in the product lifecycle interaction points should occur
In D3.1 (Section 4.2) we identified some requirements on when interaction points should occur, and
identified two ways of triggering an interaction point (a set of combined analyses):

• "statically scheduled" interaction points, decided in advance to take place at pre-specified points
in the PLC. These should be scheduled to be frequent enough that any necessary rework identified
will not be too expensive, but also rare enough not to be an excessive overhead cost. We expect
that:

o a first interaction point must necessarily take place at the system requirements and
concept phase of a project, to ensure that the requirements set are at least in principle
consistent, that essential potential conflicts are identified, and that the conceptual system
design envisaged is at least potentially adequate to satisfy them;

o later interaction points would be scheduled for points in the PLC that precede important
investments of effort, time and money: e.g., after specification of any bespoke software
required in a system, before the implementation of this software proceeds, so as to avoid
having to rework these specifications after problems are revealed in the implemented
software.

• interaction points that are triggered by detection of some problem, which makes it desirable to
perform combined analyses without waiting. These will require management mechanisms for
reporting the problems to allow the decision to trigger these interaction points. We can expect
that if a development organization is very effective at detecting problems, to trigger these IPs as

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 23

needed, it will need fewer "statically scheduled" IPs, and thus possibly achieve lower overall costs.
This 'effectiveness' would depend on many factors: the type of systems they develop, their
relationship with subcontractors and suppliers of off-the-shelf parts, and their management
culture. We do not expect AQUAS to develop enough experience to recommend criteria for
organizing these "dynamic" IPs. It can be expected that most organizations adopting an AQUAS-
like approach would initially rely on scheduling IPs statically, and develop experience over time
that might enable them to reduce their dependence on "statically scheduled" IPs.

2.2 Common terminology: The Product Lifecycle Conceptual Model
The AQUAS project aims to produce improvements, in the processes for co-engineering of quality
attributes, that are flexible enough to satisfy the needs of diverse application environments – industrial
sectors as well as individual companies and projects – as represented by the AQUAS use cases.

To allow interchange of experience within the project, and for AQUAS outcomes to be usable outside
AQUAS, a common understanding of the essential common elements of the process is required. The
AQUAS Conceptual Model presented here supports this goal by defining the relationships between the
essential concepts introduced in AQUAS with those that belong to the common understanding of
product lifecycles. This model has been developed by observing, and generalizing from, the processes
in the AQUAS use cases and relating them to the overall concepts introduced in D3.1.

This document gathers general concepts of software engineering, relating them to existing standards
and elaborates on new concepts which are specific to the co-engineering challenges. The conceptual
model is the ground on which to build a comprehensible AQUAS methodology with a unified vision
regarding concepts and terminology.

2.2.1 The 4-model structure of the AQUAS conceptual model
The AQUAS conceptual model is divided in 4 interconnected components.

Figure 2-5: The 4-model structure of the AQUAS conceptual model

The PLC model, product and organization model, and quality analysis model gather basic concepts
which are needed to understand the latest model in this document, the CE model, which serves to
describe the ground for the AQUAS methodology.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 24

A layered figure can be used as a metaphor. On the “surface”, the Product and Organization layer is
followed by the Quality analysis layer. These two layers are much more mature in systems and software
engineering than the Co-Engineering layer which is the focus of AQUAS (the Co-Engineering for Quality
layer, at the bottom of the figure). The vertical layer of the Product Life-Cycle provides the time
dimension where the product and organization evolve, and where the quality analysis and co-
engineering takes place across the different stages.

Figure 2-6: Layered representation of the analyses

As mentioned before, this conceptual model sets the ground where the AQUAS methodology is built;
however, the conceptual model per-se provides limited support for guidance. The conceptual model
provides a common understanding of the concepts that can then be instantiated in each specific
project using their own implementation of the concepts and their relations. While we recommend
reading all the sections, an expert might want to go directly to the Co-Engineering layer section.

2.2.2 Product Life-Cycle Model

2.2.2.1 Introduction to the PLC Model
The Product Life-Cycle (PLC) is of paramount importance in the AQUAS project, as co-engineering must
span different life-cycle stages. Focusing only on one stage (e.g., requirements or software
implementation) would limit the project to a very narrow scope as well as defeat some of the goals of
AQUAS to discover when and how often IPs should occur. Thus, different AQUAS goals were defined
to effectively manage co-engineering inside and across the PLC.

PLC is defined as the evolution of a system, product, service, project or other human-made entity
from conception through retirement.

ISO/IEC/IEEE 15288

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 25

Figure 2-7: SEBoK core concepts and their relevance to the PLC

These concepts helped to define the AQUAS PLC model. Notably, we extended previous PLC model
concepts, and, introduced links between the PLC model and the product model.

2.2.2.2 AQUAS PLC Conceptual Model
The following figure shows the main concepts of the PLC model:

The following figure shows an excerpt of the SEBoK Core Concepts [SEBoK] that acknowledge the
Life-Cycle Model as a prime entity supporting systems engineering. We added the circle to identify,
inside it, concepts relevant to the PLC. They propose a PLC model containing several stages and
referencing several PLC processes. These processes are then linked to the evolution and production
of the system.

SEBoK Core Concepts

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 26

Figure 2-8: The Product Life Cycle (PLC) model

A PLC contains a set of Stages regarding “the evolution from conception through retirement”
(ISO/IEC/IEEE 15288). A possible instantiation of the stages can refer to the phases of the V-Model, but
it is open to instantiate other PLCs, given that each application domain might be required to comply
with a PLC standard, or to follow an in-house methodology. Stages in turn contain Steps, describing
the process at a more detailed level.

Stages and steps are linked via the containment relation. Iterative processes where one or more
iterations are used (e.g., to refine a work product) can be expressed. It was also stated by industrial
partners of some UCs that during the PLC, more than one stage can happen in parallel. Likewise, steps
can also happen in parallel to other steps.

Then we have a part of the PLC model which is related to the Decisions and the rationale management
(managing the rationale of each decision) needed to advance in the PLC, to move backwards, or to
request changes. A Decision is a Step of the PLC. In the figure we added representative examples, as it
is not possible to enumerate all the possible types of decisions that can happen in specific projects. In
the next figure we focus on two examples, to show how each decision can be related to various
concepts. The Decision to Go To Next Stage relates to the involved Stages, while the Changing
Requirements Decision is directly related to a specific concept in the Product Model.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 27

Figure 2-9: Relation between the PLC model and the product model

2.2.3 The Product and Organization model

2.2.3.1 Introduction to the Product and Organization model
The Product and Organization model focuses on the diverse types and versions of the work products,
as well as on the teams, skills, and tools at hand.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 28

Figure 2-10: ISO/IEC/IEEE 42010 Architecture Conceptual Model

The ISO/IEC/IEEE 42010 focusing on the Architecture as a key work product. We can also observe how
the stakeholders and their concerns are represented.

ISO/IEC/IEEE 42010

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 29

Figure 2-11: SEBoK core concepts related to work products and organization

2.2.3.2 AQUAS Product and Organization conceptual model
A work product (and its various versions) is created by a team or a set of teams. A team is expert in a
set of techniques, usually supported by tools available to the team, but in some cases not tool-
supported, but applied manually. The work products can be very diverse. Examples can be
Requirements, Architecture, System (and the hierarchy of sub-systems), Documentation (such as risk
management documents or Assurance cases). The application domain will define the peculiarities
regarding the required work products.

SEBoK conceptual model related to Work Product and Organization. Given the diversity of work
products, SEBoK authors do not give an exhaustive list. Regarding organization, they describe the
organization as a set of roles and systems engineers which are qualified in different
competencies/skills.

SEBoK Core Concepts

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 30

Figure 2-12: The product and organization model

The work product concept is also related to the PLC model. Notably, a PLC stage uses work products
as inputs and produces outputs. Also, a PLC stage can have a set of associated work products which
are expected to be created or refined during the stage. Also, a team, or a set of teams, are involved in
the PLC decisions that need to be made.

Figure 2-13: Relation between the PLC model and the product and organization model

2.2.4 Quality Analysis model

2.2.4.1 Introduction to the quality analysis model
Quality analysis in the PLC of a system is essential for checking that all the system requirements
regarding functional and non-functional properties are satisfied.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 31

Figure 2-14: SEBoK core concepts related to product quality

2.2.4.2 AQUAS Quality Analysis model
A quality analysis is a step in the PLC where, taking as input existing work products, a team analyzes
one or several quality attributes (e.g., safety, security, and performance) using appropriate techniques
and tools. A quality attribute can be an aggregated quality attribute like dependability which
aggregates other, atomic quality attributes. The quality analysis results (e.g., metrics quantifying the
quality attribute, reports) support the decision-making process in the PLC that is to be triggered by the
quality analysis. A quality analysis result can be, in some cases, a work product, although this is not
represented in the model. The quality analysis consolidation is a special type of quality analysis, i.e.,
the consolidation of results of different quality analyses for the same quality attribute.

The SEBoK conceptual model takes into account System properties, which refers to the relevant
quality attributes of the system.

SEBoK Core Concepts

As mentioned before, the matching notion in ISO/IEC/IEEE 42010 is "Concerns" of the various
stakeholders.

ISO/IEC/IEEE 42010

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 32

Figure 2-15: Relation between the PLC model, the product and organization model, and the quality analysis model

2.2.5 Co-Engineering model
A focus area within an organization involves personnel with a set of specialized competences (e.g.,
security), and deep knowledge of the system from their own perspective. Mainly because of this
specialization, the team (or set of teams) within a focus area does not continuously interact with other
teams of the organization, and the work products that they manage may have separate workflows.
Because of this separateness, focus areas are sometimes described as "silos" or "islands".

An interaction point is a step in the PLC and a special type of quality analysis where several quality
attributes belonging to different focus areas within the organization need to be analyzed together. It
also contains a set of specific quality analysis techniques called interference analysis techniques.

Interaction points can be scheduled to occur at predefined moments of the PLC, or the need of an
interaction point can be identified by a focus area during their activities. Regarding the latter, an
additional type of PLC decision consists of triggering an interaction point.

In the model, interference analysis techniques may mean concrete techniques, such as FMVEA or
HAZOP, or families of techniques, such as simulation, dependability analysis techniques,
parametrization of quality attributes tradeoffs, sensitivity analysis etc. A more formal hierarchy of the
families of techniques and concrete techniques is on-going work.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 33

The Co-Engineering model also defines another type of decision called a trade-off decision where the
involved teams need to explore and select the most appropriate solution (work product delta) to the
engineering conflict.

In the diagram, the Interaction Point concept is not directly linked to work products; however, given
that an Interaction Point is a type of Quality Analysis, it inherits this relation as well as all the other
relations of the Quality Analysis concept.

Figure 2-16: Relation between the PLC model, the product and organization model, the quality analysis model, and the co-

engineering model

2.2.6 Traceability across the PLC
The presented model is expressive enough to capture relevant traceability information. This subsection
discusses how traceability across the PLC can be achieved when these models are instantiated in terms
of documents and other artefacts produced, actions decided, etc., in a specific project. First, the PLC
differentiates the stages, and the stages and steps are activities in the PLC where we can add
traceability to their corresponding work products’ versions, the interaction points, and the decisions
that took place in each PLC entity. In this way, for example, we can enable complete traceability if an
interaction point triggered the decision to go back to a previous stage in the PLC to reconsider some
requirement, or to make changes in the work products.

The next chapter goes into more detail about requirements on tooling to support traceability.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 34

3 Tooling Requirements for Supporting Interaction Points and
Traceability

Contributor: Magillem

The AQUAS approach implies that:

• Each IP will involve combined analyses encompassing various attributes; various forms of
combined analyses are supported by the various tools available and/or enhanced in AQUAS, and
part of WP4 work concerns the interaction between such tools; this chapter does not address these
aspects;

• There will be an information flow from an IP to the later steps and stages of the lifecycle and in
particular to the later IPs.

This chapter focuses on this second aspect, which lies at the interface between WP3 and WP4. A focus
group was formed to analyse the requirements on tooling that arise specifically from the need to
support IPs, that is, not just supporting combined analyses for safety, security and performance, but
structuring the application of these combined analyses in the PLC in terms of IPs. The members were:
Magillem (Emmanuel Vaumorin, Matthieu Pfeiffer, Vincent Thibaut), Intecs (Silvia Mazzini, Stefano
Puri) and Ansys (Marc Born). The method adopted was to:

• Consider the inputs from WP3

• Use the description of the IPs from all UCs and analyze and generalize to feed and verify the
proposed concept

• Define and propose a specific use model for IP

• Take into account the functionality available in existing tools.

This work, reported in this chapter, had these objectives: 1) to enable the implementation of support
for IPs in several tools, provided by partners in the AQUAS project or to be developed further; 2) to
ensure that those tools apply the concepts developed in the AQUAS methodology work on co-
engineering; and 3) to illustrate the applicability of the tools with generic examples. We have
considered the inputs from other deliverables of WP3, and also the descriptions of tooling support for
individual use cases in WP4 deliverables.

3.1 General scenario for supporting IPs
The following characteristics of an envisaged scenario for applying an AQUAS PLC have been extracted
from D3.1 Chapter 4, on Interaction Points. They have been taken into account in the requirements for
the tools supporting interaction points:

• IPs aim at ensuring satisfaction of various non-functional requirements, where "ensuring" means
"achieving and demonstrating"

• It may not be feasible to expect a single team of experts to have the skills to perform specialist
tasks related to different requirements, e.g. both cybersecurity and safety tasks to be performed
by the same expert team

• So, specialists of different cultures are separated in "focus areas", or "silos"; information easily
flows vertically within a focus area (a specialism) but not between them

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 35

• Non-integrated processes are thus present to deal with safety, security, performance, and
communicate in more or less well-defined ways. In AQUAS these established means for interaction
are known as interaction points

3.2 Typical expected needs
Some expected needs for recording and tracing IPs in an AQUAS-style PLC are :

R-IP01: For each IP, it is necessary to record that it took place, which analyses took place, what they
concluded

For instance, the context of the interaction point creation, the team[s] involved, the list of modelling
artefacts to be taken into account, the questions raised, the analyses which have been conducted, the
conclusions of the analysis, etc.

R-IP02: For each IP, it is necessary to record what decisions were taken as a result of the analyses

For instance, a record that all was judged fine, so that development work would proceed further; or
that more in-depth analyses were required; or that the requirements for some subsystem had to
change (and what changes were decided); and for each decision taken, its genesis (who was involved
and signed them off) and rationale (recorded so that at later stages in the PLC one can understand why
the product is the way it is).

R-IP03: For each IP, it is necessary to record the changes made to artefacts as a result of decisions
made

For instance, documenting that a specific parameter of the hardware platform was investigated and
set to a value because it gave the best performance of software execution, while satisfying a safety
requirement.

R-IP04: For each IP, it is necessary to record which iterations of that IP took place

The analyses performed at an IP may prompt changes to artefacts (possibly backtracking to an earlier
stage in the PLC: e.g., an IP may trigger a decision to change requirements decided at that earlier stage),
so that the IP (the set of analyses and the decisions) then must be repeated. The information to be
maintained thus includes iterations of the IP, and, for each iteration, the various information about
analyses, decisions, and artefacts affected or produced.

R-IP05: For each IP, it is necessary to record the artefacts produced for and by the analyses

Each analysis might involve models developed for that analysis - e.g. a SAN or FT model or flow chart,
etc. and the outputs produced using that model.

R-IP06: For each IP, it is necessary to record any warnings or request for action to be propagated to
later stages of work

This may involve later IPs, e.g. such a warning/request could be: "there is a potential problem with
performance-security interaction, and whether this problem in fact arises needs to be checked once
the code for subsystem Z has been written".

Remark: The focus group observed that these are special cases of more general capabilities, and chose
to define these more general capabilities that would allow IP-supporting tooling to be configured for
the needs of a specific AQUAS-enhanced PLC in a specific organization and industrial sector. These are
listed in the next section.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 36

3.3 Specific usage requirements for tools supporting Interaction Points
The following specific requirements for tools supporting interaction points are defined. These are
requirements for the tool set chosen to support an AQUAS-style PLC: no specific set and allocation of
responsibilities between them is assumed.

R-IP07: The tool set shall provide functionality to aggregate references of design artefacts or
documents

The role of the tooling is to enable the IP stakeholders to select some artefacts in the information silos
and to use references to those artefacts in order to create a new level of information at the IP level – a
useful description of the IP and its results – aggregating the referenced data. For instance, a report on
the combined analyses could include some references to several parameters concerning several
components that are part of the subsystems involved.

R-IP08: The tooling shall not be only file-centric but should also offer some support for modelling
semantics

Document formats may be very diverse, and could include special formats used by modelling tools. For
instance, a reference to an artefact could be performed directly in a modelling tool in order to facilitate
the selection of artefacts by the IP manager. For instance, a modelling tool could provide to an IP
stakeholder the ability to select model elements as artefacts to be used in the IP, so that the references
can be stored to achieve traceability between the IP report and the model elements referenced. The
specific modelling semantics to be supported are not defined here, and will be the decision of each
tool vendor depending on which other tools they wish to integrate; a minimal requirement, though, is
that the mechanisms for referencing artefacts shall be compatible with any “text” based document.

R-IP09: The tool set shall provide a capability to collect definitions of exploration fields

Certain analyses may involve exploration by an analysis tool of a range of parameters or design
characteristics, e.g. to perform sensitivity analysis or to seek feasible, or optimal, trade-offs. The tool
set shall support entering the required selections of exploration field parameters for several types of
artefacts.

R-IP10: The tool set shall bring traceability capabilities

The tool set shall have traceability capabilities to enable browsing from an artefact reference to all
other connected artefacts. This kind of traceability capability, common to all tools, could be provided
for instance by a traceability tool, but this requirement does not mandate that solution.

R-IP11: The tool set shall be compatible with any flow choices

To do so, the tooling shall be flow-agnostic, that is to say it will not introduce any specific semantics in
the type of artefact to be managed. For instance, if the artefact is the representation of a fault tree,
the tools shall provide a way to reference this fault tree or any element in this fault tree, at any
granularity. So, any artefact is considered just as an artefact and in this example there is no need to
specify that this artefact is a “fault tree”; we leave this work to the IP description.

R-IP12: The tool set shall provide a capability to register and aggregate the states of the artefacts
relevant for a decision

The IP stakeholders shall be able to describe how the referenced artefacts are impacting their own
artefacts, or additional artefacts created at the IP level. For instance, the tool set must allow a software
stakeholder (that is, a person in charge of SW-related decisions in the IP) to record explanations about

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 37

how executing some software components on certain hardware processors could have an impact on
execution times and on the safety requirements.

R-IP13: The tool set shall support the decision process but not take into account the flow of decisions
downstream of the IP

The tooling shall provide the capability to manage the evolution of the IP iterations, but it might not
provide capabilities to manage the decision flow itself. That is, when the interaction point has been
fully described in the tool set, with decisions requiring actions within the silos, the IP record is then
frozen and each silo manager goes back to their activity to decide how this impacts their next tasks to
be performed. The results of these tasks performed within the silos may be fed back, as required, into
a further iteration of the IP.

R-IP14: The tool set shall not integrate the loops of the decision process

The tooling functions for IPs shall provide support to describe the IP itself, but not the loops of silo
activities in the flow that leads to the iterations of IPs. That is to say that the tooling shall support the
management of several versions of the IP itself (see following requirement), but not include the silo-
specific processes that use the information from the IP.

R-IP15: The tool set shall provide history information for information stored in IP description

The tooling shall provide versioning capabilities to support iterations of the IP: in Figure 3-1, an IP can
have two or more iterations: records of all iterations, with modifications or additions to artefacts, shall
be available for later reference, for instance to analyze the evolution of the design.

R-IP16: The tool set shall provide a capability to timestamp the referencing of information fragments4

The referencing of the fragments and of several modifications in the artefacts must be timestamped.
A fragment (of information) is an atomic reference to a design artefact. When a fragment is used in an
IP report, this fragment is timestamped and referenced. That means that in a further version of the IP,
the fragment in reference could be changed (for instance I say that I’m not anymore taking into account
this parameter A of the hardware platform but parameter B instead), and also the artefact could
change (for instance the fragment on parameter A was done when A=1 and in another iteration, A=2).
All those modifications must be recorded and traced to help IP stakeholder to be informed of
modifications that could impact the analysis or further decision flow.

Note: Focus on Safety/Security/Performance trade-offs

In order to provide capability of inconsistency detection, risk analysis, and/or conflict detection, the
tooling is dedicated to Safety/Security/Performance trade-offs, but other use models not defined here
could be supported, because the implementation choices shall be generic.

In AQUAS, some tools like Magillem’s are evolving from being general-purpose tools to include
features to support IPs specifically, while others like CHESS or Medini, etc., which are natively able to

4 In this context:
• An artefact is a piece of the design description; for instance: a processor instance in a hardware platform description in

XML documentation standard
• A fragment (of information) is, in this example, the reference to that processor, so the piece of XML that is used in the

standard to identify this processor; so the tool should store a reference of this fragment of XML code.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 38

support a selected set of analyses, will take these requirements into consideration as inputs for
evolution in the longer term.

3.4 Requirements on the use flow
The following figure illustrates how the tools dedicated to interaction points must manage the data
used in the interaction points in a co-engineering context.

Figure 3-1: Use flow of an interaction point.

First one considers “Artefact Silos” which are the repositories of information dedicated to each specific
modeling activity. These silos are used to support the product life cycle of the artefacts used in the
activity. Those artefacts are considered as documents, in which a list of fragments of information are
contained (represented as the pentagons). This first phase is detailed in Section 3.5.1.

Those fragments are defined at any granularity (fine or coarse) requested by the interaction point. The
tool set supporting IPs must provide the capability to select the documents of each silo that are of
interest for the interaction point and then provide the capability to select the fragments of interest.
This import activity will be detailed in Section 3.5.2.

Then, in an instance of interaction point, at the first iteration, the fragments of information will be
made available as references to realize an aggregation of data. This aggregation of data will be
explained in detail in Section 3.5.3. The tools can generate the IP report #1 which will be used in the
specific decision flow of every modeling activity. The cycle can then iterate with the same steps: for
the next iteration of the interaction point, the same references or some additional ones are available
for an updated aggregation of data and then for the generation of the new IP report. The IP tooling
will provide features to trace the evolution and modification in referenced fragments.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 39

3.5 Requirements on the use model
In this part, we detail the steps of the use model. In this use model, we have two kinds of roles:

- the silo manager is responsible for delivering the artefacts of interest and the fragments of
information from its silo to the IP manager.

- the IP manager is responsible for collecting artefacts and fragments from each concerned silo
manager, to build the IP description, to aggregate data and to build the IP report.

3.5.1 Use model-Step 1: Files collection
The tooling provides a capability for users to select artefacts, and creates references to them through
fragments of information across all design files. This gives the ability to have references to all files that
are to be used in the analyses and/or discussions that are part of an interaction point. These may
include several files for each silo (examples: hardware architecture description, requirements,
performances reports, configuration documents, etc.). Also, previous versions (if they exist) of the IP
report are imported. The tools fragment the documents (coarse or fine grain). At this point, the IP is
identified with its name and version, and in a first phase the IP stakeholders have access to this list of
references of files located in the silos, and for each file, the contained fragments of information is
available for selection in the next phase.

Figure 3-2: File collection in the IP. Note: "IP project" is, following ECLIPSE terminology, a tool-defined entity in which the

references and other information created for the IP are stored.

3.5.2 Use model-Step 2: Fragments collection
In each of the selected files, the fragments of information to be used for the IP activities are selected
and referenced into an initial version of the IP report. An IP will always involve some kind of analysis,
plus perhaps some discussions, explorations of possible trade-offs, decisions, changes to various
artefacts. For instance, we consider the activity of seeking a trade-off.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 40

Figure 3-3: Fragments collections in the IP

3.5.3 Use model-Step 3: Trade-off description
Starting from the initial IP report, the IP manager writes, with the assistance of the silo managers, in
natural language, the expression of each trade-off in the IP.

Figure 3-4: Trade off description

3.5.4 Use model-Step 4: Action plan description
All actions decided that must be performed as silo activities in relation to the selected artefacts are
described in the IP report. Thus, this report will be referenced and used by the silos to perform redesign
of system parts, changes to requirements, explorations of candidate designs, etc.

Figure 3-5: Action plan description

3.6 Conclusion
This chapter proposes a list of requirements for implementing tools that support the IP concept in
AQUAS, in its entirety or limited to some of the functions required by IPs. These requirements are
generic enough to support a variety of design and decision flows. They have been produced taking into
account some existing functionalities of AQUAS partners’ tools, so that the effort to prototype a
demonstration solution in the frame of the AQUAS project is minimal; but other solutions may be
envisaged following these requirements, ensuring potentially broad dissemination in the industry. An
example of use of the Magillem Content Publisher (MCP) to support IPs in UC4 (industrial Drive) is in
section 4.2.5 of deliverable D2.3.4.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 41

4 Methods for Combined Analyses
This Chapter presents methods for combined analysis, which are being applied in the AQUAS project.
For clarity of explanation (as per the AQUAS workplan), the methods are presented via small examples
of application to problems in the AQUAS use cases; but they are grouped independently of the use
cases, as the goal is to explain techniques that can be applied in a range of domains. In fact, several of
the methods are presented with examples in more than one use case; for example, extended fault-
tree analysis applied in both the space and medical use case (Section 4.9), and the Hepsycode
methodology and framework applied in the ATM and space use cases (Section 4.6).

The methods are presented in three categories. The first category includes methods related to
hazard identification that can be applied at the stage of requirement specification and conceptual
design: HAZOP and HARA, and trade-off analyses triggered by the identified hazards (Sections 4.1-
4.3). A second group of various methods (Sections 4.4-4.6) supported by various tools is applicable in
lifecycle stages following the Requirements Phase for various firms of combined analysis of safety,
security and performance (Sections 4.7-4.9). The final category of methods is concerned with
verification and validation activities, for example in terms of conformity of source code with its
requirements, or verification of timing requirements (Sections 4.10-4.13). Each method is defined by
its aim, method, results, lessons learned, and when appropriate, further developments of the
technique, or applications of it planned within AQUAS.

4.1 Hazard and Operability Analysis for identifying safety/security interactions
at requirement/conceptual design stage (Medical Use Case Example)

Contributors: City and UC2 partners

Hazard and operability (HAZOP) analysis [IEC 61882:2001] is a structured and systematic method to
identify potential hazards and determine appropriate mitigation strategies. Although originally
developed for detecting safety hazards due only to accidental causes (that is, not security-related), and
not generally applied to security matters, here we confirm its utility in a combined analysis involving
malicious causes of hazards, i.e., the combined analysis of both safety and security.

A HAZOP exercise was applied in the Requirements Phase in the medical use case (Use Case 2).

We recall, as discussed in Deliverable 2.2 Chapter 1, that UC2 concerns the extension of an existing
device for monitoring blood pressure and neuromuscular transmission to make it able to control an
infusion pump and perform closed-loop control of these physiological parameters.

The subset chosen for analysis is a specific, informative use scenario: closed-loop control of blood
pressure during a surgical intervention. This use scenario is expected to exhibit many of the new
hazards that arise when extending RGB’s previous monitoring device to the new, closed-loop control
device. Specifically, it describes the steps and possible user interventions that may occur when
maintaining a patient’s mean blood pressure at 70 mm Hg by automatically calculating and infusing
appropriate doses of Sodium Nitroprusside (SNP) and Glycerine Trinitrate (GTN).

4.1.1 Aim of the example
The goal of the HAZOP analysis was to review the system requirements and preliminary design of RGB’s
closed-loop device, to identify potential hazards that could arise during the identified use scenario.
Importantly, HAZOP relies on bringing together the various viewpoints/knowledge of the participants
in a HAZOP session (in this case, for example, Trustport provided the security viewpoint, City

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 42

represented human factors concerns). Potential hazards, especially those with a high likelihood and
severe consequence, highlight areas in the system that require appropriate remedies, or additional
analyses about the likelihood of deviations, their consequences and the effectiveness of mitigation
measures. Such remedies could result from work/suggestions by a single partner, or require the
collaborative analysis of various partners of different specialties. Among further analyses that can be
triggered, potential hazards, or feared events, identified in the HAZOP can be input to e.g. developing
fault trees, and FMVEA tables, which further enhance the understanding of hazards and their
propagation within the system.

4.1.2 Method
For use as a HAZOP worksheet, an online, shared Excel sheet was set up with the headings shown in
the example in Table 1. Four two-hour teleconferences were run between June and September 2018.
A HAZOP analysis proceeds by systematically applying a series of guidewords to each step in the use
scenario: for each guideword, session participants try to identify potential deviations of the system
behaviour from the design intent. The guidewords5 act as triggers to stimulate participants to envisage
how the deviation might occur and its potential consequences. For each deviation, possible causes and
likelihood, consequences and severity, existing safeguards, and action points (some requiring work
outside the scope or timeframe of the AQUAS project) were documented. A recorder documented the
discussions in the HAZOP worksheet. As the teleconferences were relatively short for the required task,
participants were also encouraged to individually update/add to the shared spreadsheet using a “name
tag” to identify their entries. After the fourth session, partners noticed the analysis had reached a
phase of diminishing return and the HAZOP table for this scenario was deemed to have adequately
demonstrated the usefulness of this style of HAZOP for this role in AQUAS-style co-engineering.

4.1.3 Results
Below is an example of a single row from the HAZOP analysis worksheet. The complete worksheet can
be found in the annex (status: project confidential).

5 The guidewords applied were: no (not, none), other than (wrong/maliciously), early/late,
before/after, faster/slower, where else, part of, less (lower), more (higher), as well as (more than), and
reverse. For each guide word, participants were reminded to consider both accidental and malicious
causes of deviations. At least one previous study of HAZOP applied to security (Winther R., Johnsen
OA., Gran B.A. (2001) Security Assessments of Safety Critical Systems Using HAZOPs. In: Voges U. (eds)
Computer Safety, Reliability and Security. SAFECOMP 2001. Lecture Notes in Computer Science, vol
2187. Springer, Berlin, Heidelberg) proposes a far more complex set of guidewords but we opted for
this simpler method considering that long lists may end up being counterproductive by taxing the
ability of participants to stay focused.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 43

Table 4-1: Example row from the HAZOP analysis

Step in the
Use

Scenario

Guide
word

Deviation
Identified

Possible
Causes and
Likelihood

Consequences
and Severity

Existing
Safeguards

Notes/
Recommendations

Action Points

Device is
connected
to tree of
infusion
pumps and
user
verifies
that the
connection
is
performed
correctly

Other
than
(wrong)

Device
connects
to a
different
pump
than the
one
intended.

Possible with
point-to-
point
connection if
the user
connects the
wrong cable,
or with
Ethernet
connection.

Likelihood
depends on
hospital
practice/user
experience.

Could change
dose rate for
another patient,
and/or fail to
provide
calculated drug
dose to given
patient.

Thus,
major/maximum
severity level
consequences.

(1) Device or
manual warns the
user that they
need to verify the
pump's behaviour
or the dose rate
being delivered.

(2) User verifies
that pump is
performing
correctly by
observing its
behaviour.

[City] Existing
safeguards rely
heavily on the
user. Perhaps
other safeguards
could be built into
the device to
assist.

[RGB] It could be
possible to include
in the device a
previous validation
window to check
the connection to
the right infusion
pump.

To study
general
security
requirements,
especially
given
Ethernet
connection

The HAZOP analysis sessions revealed a number of interesting results that can be grouped into four
main categories: (1) areas requiring further specialist analysis, (2) areas requiring further combined
analysis, (3) changes to device design to help mitigate identified risks, and (4) useful inputs to other
analyses in the Requirements Phase. Examples of these four categories of results are described below.

• Areas requiring further specialist analysis: In response to risks associated with the connection
between the pump tree and the device (for example: another device influencing control of the
pump, or the control device connecting to a different pump than the one intended, etc.), a
need for further specialist security analysis looking at general security requirements of the
Ethernet connection, as well as encryption options was identified.

• Areas requiring further combined analysis: Among inter-attribute concerns, a trade-off was
noted involving user authentication. To enhance security of the device, some form of
authentication (e.g. a pin/card) is likely required for important changes to the device’s
parameters (e.g. blood pressure target). However, this authentication must also allow the user
to operate the device quickly for efficient care of the patient and must not introduce new
safety hazards due to delays in decisions/actions. This point raises the need for further
combined analysis of these trade-offs by security and human factors specialists, and this trade-
off analysis is discussed further in Section 4.3.

• Changes to design to help mitigate identified risks: Within the steps involved in the set-up of
the device, several hazards related to incorrect sequence of steps, or missing steps were noted
(i.e., user forgets to load the syringe, or connection between the pump tree and device was
not established, etc.). As a potential mitigation to these, RGB has included in their new design
of the device interface a validation sequence (including a set of mandatory steps and input
parameters) to aid the user through the various set-up steps and confirm that they have been
correctly performed before initiating automatic control.

• Input to other analyses in the Requirements Phase: The HAZOP exercise links to the work of
other partners in the medical use case. The feared events identified in the HAZOP become
inputs to the Fault Tree Analysis (FTA), Hazard Analysis and Risk Assessment (HARA) / Threat

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 44

Analysis and Risk Assessment (TARA), and the cyber risk analysis. These possible combinations
of methods are shown in Figure 4-1.

Figure 4-1: Link Between HAZOP Analysis and other Analyses by UC2 Partners in the Requirements Phase

4.1.4 Lessons Learned
The HAZOP Analysis fulfilled its purpose as a useful method to share the knowledge and expertise of
different partners, combining multiple perspectives, in the medical use case. Although most partners
involved had no previous experience of HAZOP, it was productive; no major difficulty was experienced
and the mixed guidewords seemed effective for the combined analysis of accidental and malicious
deviations and consequences. In the early Requirements Phase of the medical use case, it successfully
identified a range of hazards, which served as triggers for changes to the device design and also as
useful inputs/triggers to additional combined/specialist analyses, run by various partners: (1) All4Tec
and Tecnalia in developing their combined fault tree analysis, (2) AMT in developing their combined
Safety HARA and Security TARA described further in Section 4.2, (3) City and Trustport in exploring
authentication trade-offs described further in Section 4.3 and (4) Trustport in progressing their
specialist cyber risk analysis.

There were limitations in this trial application. HAZOP is meant to be a heavily interactive process, so
working remotely via teleconferences and using an online, shared spreadsheet was a challenge. Some
stakeholders were also not represented as would be expected in a complete HAZOP analysis; for
example, RGB was compelled to act as a representative of end-users. Both these observations suggest
that the technique would be more effective, not less, in the usual industrial environment than it is in
the environment of the research project. Apart from effectiveness (finding hazards that would not be
found without this technique), the other objective of HAZOP (or any other structured hazard
identification technique) is completeness (finding them all); how close a technique gets to
completeness cannot be tested by a trial on a very limited effort and timescale (and, especially, without
the ultimate test of system operation to reveal whether essential hazards were left unnoticed and

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 45

untreated), as imposed by the size of AQUAS. However, we will monitor whether later verification
steps reveal hazards that were missed by the HAZOP parts performed.

4.1.5 Further Developments
The HAZOP analysis of the closed-loop control of blood pressure during a surgical intervention scenario
is now at a stage that helps demonstrate its usefulness and has provided useful outputs. Currently,
RGB and UC2 partners are discussing how best to move forward within the AQUAS budget constraints:
to extend the HAZOP analysis to other scenarios of use, especially in the intensive care unit (ICU), or
to use AQUAS resources on some of the other analyses currently underway in this use case, especially
those that have been triggered by the HAZOP analysis.

The complete HAZOP worksheet is provided in the Annexes (status: project confidential).

4.2 Combined Hazard Analysis and Threat Assessment Including a Threat
Identification Based on Assets (Medical Use Case Example)

Contributor: AMT

A hazard and risk assessment is a structured and systematic method to identify potential safety
hazards. Thereby, potential malfunctioning behaviours of a device are considered in a certain usage.
Depending on the likelihood of that scenario and the severity of the potential hazard, a criticality level
is determined. This allows later application of appropriate mitigation strategies. In the medical domain,
standards like ISO14971 define the application of this method.

Threat Assessment is a method to estimate the credibility and seriousness of a potential threat, as well
as the likelihood that the threat will happen. This implies the identification of the threats.

An exercise for a combined hazard and threat analysis including a threat identification based on assets
modelled in SysML was applied to the Requirements Phase in the medical use case (Use Case 2). UC2
concerns the extension of an existing device for monitoring blood pressure and neuromuscular
transmission to make it able to control an infusion pump and perform closed-loop control of these
physiological parameters [Deliverable 2.2].

The analysis was based on the same example that was chosen for the HAZOP analysis in Section 4.1.
Additionally, the results of that analysis were used as an input for the threat assessment.

4.2.1 Aim
A key aim of the combined analysis and assessment of hazards and threats is to identify them and to
estimate their criticality. At the same time, it helps to expose the relations between threats and
hazards to emphasize those threats that potentially lead to safety hazards. Thereby tool-based
automated threat derivation from a design model provides a systematic way to find new threats which
can then be assessed in a threat assessment.

4.2.2 Method
The tool medini analyze, which is dedicated to performing analyses in the area of functional safety and
cybersecurity, was first applied to perform a hazard analysis based on the high-level function of UC2,
namely, to inject a medication to control a patient’s blood pressure. This function was modelled in
medini analyze:

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 46

Figure 4-2: Initiating a new function in medini analyze

The required malfunctioning behavior of that function as an input for the hazard analysis was modelled
as a set of malfunctions that are found by performing the medini analyze built-in HAZOP analysis:

Figure 4-3: Applying HAZOP analysis in medini analyze

Here the table editor shows in the columns the guide words to be applied to the function in the rows.
The intersecting cells can be used to define the malfunctions that match the guide word in the context
of the function.

While in Section 4.1 HAZOP was applied on a process view of UC2, here the HAZOP is used on a
functional view of the system. In the process view the guide words help to identify deviations from the
intended sequence of steps in the process whereas in the functional view the guide words support the
derivation of malfunctioning behavior of the analyzed function. As shown later in this Section, medini
analyze as a model-based tool could have been used too to execute a HAZOP on the process view of a
system.

The found malfunctions are then input for the hazard analysis whereby medini analyze allows filling
the lines in the HARA table either manually or automatically by permutationally combining the set of
malfunctions with a list of operation modes.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 47

Figure 4-4: Identifying malfunctions in medini analyze

For the threat assessment, again medini analyze is used. In order to come up with an initial set of
threats, the tool allows, in the step of threat identification, the automatic derivation of threats out of
a SysML model that either describes an architecture of the target of evaluation (TOE) or defines the
item under consideration on a functional level. The SysML model is used to annotate the artefacts,
whether they are assets or not, and what security attributes are of interest.

Figure 4-5: Asset Identification in medini analyze

From the annotated model, threats are derived automatically by creating a threat for every security
attribute of an asset whereby the security attributes are mapped to a corresponding STRIDE category
[STRIDE].

Figure 4-6: Threat derivation from assets

Triggered by a tool interaction, the derived threats collected in the list are then filled into a threat
assessment table that allows estimation of their severity according to different fields (e.g. safety,

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 48

financial, etc.) and their likelihood. The estimation of the corresponding parameters for impact and
likelihood follows the definition published in the HEAVENS security models [HEAVENS].

Figure 4-7: Threat assessment table in medini analyze

The Excel-based HAZOP analysis introduced in Section 4.1 and its corresponding annex was imported
manually into medini analyze and helped identify potential attacks that in turn can cause one of the
identified threats. The resulting table in medini analyze (see Figure 4-8) also allows tracing of
malfunctioning behaviour resulting from the hazard analysis as effects of an attack. Here the relation
between security and safety aspects becomes visible.

Figure 4-8: Imported process HAZOP and derived attacks

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 49

Figure 4-9: Linking attack scenarios to threats

4.2.3 Results
The results of the applied method are a list of safety hazards, threats and attacks and their relation
between each other in respect to causes and effects.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 50

Figure 4-10: Identified hazards, threats, attacks and the relations between them

The impact that an attack has can be made visible in the relations view of medini analyze. Here it can
be seen that an attack might lead to a threat and the threat itself could cause some malfunctioning
behaviour of the device that controls the infusion pump, resulting in one of the serious safety hazards
ischemia or hemorrhage, depending on the specific malfunction.

Figure 4-11: Relations view in medini analyze

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 51

4.2.4 Lessons Learned
The combined Hazard Analysis and Threat Assessment as presented here is a suitable method to
identify hazards and threats. In particular, the automated derivation of threats based on an
architecture model, enriched by the possibility to mark certain artefacts in the model as assets with
corresponding security attributes, enables improved argumentation with respect to the completeness
of the potential threats that must be assessed.

Furthermore, it has been proven that the results of the HAZOP analysis described in Section 4.1 were
a good starting point for further analysis, especially with respect to security. Thus, attacks could easily
be derived from the deviations that were described there.

4.3 Combined Analysis of Trade-Offs Regarding User Authentication (Medical
Use Case Example)

Contributors: City and Trustport

This analysis aims at clarifying trade-offs that arise from a novel security requirement. Its intended
output is a description of the risk associated to each alternative design solution, so that designers can
choose on a rational basis.

This is an example of a challenging combined analysis in which (a) security controls meant to preserve
safety of operation conflict with safety and operation performance goals and (b) users’ attempts to
preserve safety and performance may impair security. That trade-offs exist is clear, but the analysis
needs to start with identifying how they arise – the causal chains, complex and possibly including
loops to be analysed – and choosing what aspects of alternative design solutions need to be presented
to the system designers for them to be able to make informed decisions. Ideally, one can then translate
this complex description into quantitative estimates of overall risk associated with each design
solution. Whether this quantitative description is feasible in practice is to be seen, and if not, the goal
will be again to assist the system designer with the part of analysis that is feasible.

This kind of complex trade-off is likely to arise in any safety-critical system with human operators; we
are applying this analysis in the AQUAS medical use case (UC2).

UC2 concerns the extension of an existing device for monitoring blood pressure and neuromuscular
transmission to make it able to control an infusion pump and perform closed-loop control of these
physiological parameters [Deliverable 2.2].

Risks associated with malicious use or unintentional misuse of the closed-loop control infusion pump,
identified in the HAZOP analysis presented in Section 4.1, raised a need to consider a form of user
authentication in the UC2. Although authentication aims to reduce security risks related to accidental
or malicious use of the device, it has negative effects as well: it may be a nuisance to some users,
especially if repetitively required; may reduce their efficiency by causing delays; and most importantly,
it may inhibit a clinician’s timely response to patient emergencies, thus posing a safety hazard. These
considerations imply a need to perform a trade-off analysis.

The analysis begins by describing various authentication methods (knowledge, token, and biometric-
based) from the different viewpoints (security, performance, usability, cost, and safety). This allows a
pre-selection of methods; this descriptive work is now being extended to a deeper, and potentially
quantitative approach. In this use case, we limit this deeper analysis to token-based authentication
methods, as the preliminary descriptive analysis indicated them as the most promising authentication
approaches.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 52

4.3.1 Aim
The goal of the analysis is to describe to a system designer the effects on risk of various options for
authentication (and to explore whether this description is complete enough to turn the problem into
one of numerical constrained optimisation of a single variable describing risk). The options are not
limited to matters of technology ("shall I use passwords or RFID badges? Shall I add a second factor for
authentication, say fingerprints?") but involve system design options about how the system will use
authentication, as in the following list:
1. Is authentication required in this medical device, and against what threats/risks?
2. Is authentication required for all modes of use of the device (operating room (OR) and intensive

care unit (ICU)), or could certain modes require different levels of authentication strength, due to
differences in physical security?

3. Which tasks require authentication? For example, monitoring versus infusion.
4. How often should a user need to authenticate themselves? For each command they wish to input?

For whole surgery interventions, or watch shifts? Or periodically? What is an appropriate “grace
period”?

5. What is more appropriate, single or multi-factor authentication, and what type of authentication
is most appropriate?

6. For the chosen method of authentication, are there policies or design variations that can help
mitigate the downsides of that choice? For example password policies, or “break-glass” options.

These questions also require understanding of the system's design constraints (e.g., does the device
need to have both an "authenticated" and a "non-authenticated" operation mode, so that the setting
of this mode becomes a critical operation to be protected by authentication?) and intended secondary
purposes (e.g., ensuring that logs of operation of the device are correctly attributed to the clinicians in
control, e.g. to support incident analysis in case of adverse events). A first round of conversation about
these aspects with the use-case owner RGB took place to help weed out some options; it is expected
that at least one additional iteration will be needed.

4.3.2 Method
The analysis begins by brainstorming to identify which specific aspects (of authentication solutions)
should be analysed. For example, performance of the authentication mechanism is an important
aspect, but which specific aspects of performance need to be considered (average time to
authenticate, probability of failure on first attempt, probability of delay long enough to cause patient
harm, etc.)?

Following this initial brainstorming of important aspects, a descriptive analysis began. This analysis is
documented in a worksheet describing the different authentication options, and the associated Cost
(Development and Maintenance), Usability, Performance, Security, Safety (First-Order Risks and
Indirect Effects) of each. These descriptions are based on several teleconferences between human
factors specialists at City, security specialists at Trustport, and the device manufacturers at RGB.

Equally important was to identify minimum requirements for each of these aspects, to eliminate
unacceptable options. For example, the time required to input a password is considered too long a
delay and too disruptive for passwords to be considered a practical authentication option.

4.3.3 Results
Below is an example of a single row from the analysis table. The complete worksheet can be found in
the Annexes (status: project confidential).

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 53

Table 4-2: Example row from the qualitative trade-off analysis

Some observations about Table 4-2 follow.

• Some of the authentication solutions (rows), such as password authentication, can be eliminated
based on the minimum requirements set out under each aspect. This helps simplify the later,
detailed analysis.

• One of the solutions compared must be "no authentication": there is no a priori certainty that
authentication will reduce overall risk. In particular, an authentication mechanism is a desirable
target for DoS attacks, meant to make the device unavailable.

• There is a need to consider indirect negative effects. For example, users that find an authentication
method inconvenient or difficult to use may invent workarounds (such as sharing the token or
posting it in a visible location) that introduce new hazards or reduce the protection offered by the
authentication. Such indirect effects are often neglected in SSP analyses, but considering them
may reveal that the solution considered least risky based on direct effects is actually riskier than
some alternative6.

• Each column describes a possibly complex aspect of the design solution: not necessarily a single
attribute with a single scalar measure. This stage of analysis is about identifying which aspects of
each aspect need to be considered individually. There is a complex web of different factors all
interacting with one another. These interactions were further clarified in a dependency diagram.
This diagram has two main goals:

1. Identifying a small, and clearly-defined subset of specific aspects to consider in the
detailed, and potentially quantitative, analysis.

2. Highlighting dependency chains, especially unexpected ones, that may lead to patient
harm.

6 To give a prominent example, the U.K. National Cyber Security Centre and the U.S. NIST recently
reversed their long-standing advice on password policies, acknowledging that policies previously
considered "most secure" (complex passwords, to be changed frequently) caused users to invent
workarounds that undermined the password-based authentication.

Authentication

Level/Type of

Authentication
Potential Tweaks

Description of the

Factor as well as

Potential

Measure(s) that

May be Used to

Quantify It

Tweaks that may be
implemented in combination
with the authentication
method and which are usually
designed to mitigate/address
some of the risks raised.

Card Reliability and ease of use of
the card reader (i.e., swipe
versus contactless) will likely
affect performance, usability,
and first-order safety hazards;
Certain high-priority alarms
override the need for
authentication; Use the card
for other purposes around the
hospital to improve usability

Ideally takes less than 5
seconds (for a user carrying
their card...)

Users may lend their cards
to others for convenience/
speed, especially in an
emergency

Card reader Printing card for each
new user; Replacing
damaged cards

Fairly easy to use; Reliability
of the card system will likely
affect usability

Probability of security
hazards, especially
unintentional ones, is
reduced. Exception: malicious
use can occur if card is stolen.

Exceptions affecting likelihood
of the risk: User forgets to
carry their card; User fumbles
with card/pockets; User
swipes the card incorrectly;
Card is damaged; Card reader
failure

Indirect risks measured as
probability of the hazard *
severity of the consequence

Different time measures may
be considered: average delay
imposed (in seconds),
probability of failure on first
attempt, probability of a large
enough delay to cause task
disruption, and/or probability
of a large enough delay to harm
the patient.

Indirect Negative Effects to

Consider

 Delay to Intervention (if not

infinite)
Vendor's cost Adopter's Cost Usability

Change to Security Risk

(Intended)
First-Order Safety Hazards

Cost may be measured in
hours/pounds and should
include cost of any required
hardware as well as
development cost

Cost may be measured in
hours/pounds. Adopter
costs include: Set-up
costs (ex: training);
Enrollment time (ex:
time needed to set up a
new user account);
Maintenance costs (ex:
protecting the database,
printing cards); and
Recovery costs (ex:
replacing
stolen/damaged card).

Usability is a wide term
meant to capture factors
such as: ease of use,
learnability, frustration,
acceptability, accessibility,
convenience, and
universality. It may be
measured on a Likert scale
based on a survey of
potential users, or instead
approximated according to
other factors and how they
affect usability (see
dependency diagram).

Security risk measured as
probability of the hazard *
severity of the consequence.
For all rows, the main risk
considered is incorrect
modification of target
parameters. This can cause
serious harm; severity of the
risk is unchanged for all rows
and only the probability
changes. All authentication
levels are also expected to
improve accountability/
traceability not just in case of
faults, but also for learning
purposes, etc.

Safety risk measured as
probability of the hazard *
severity of the consequence.
For all rows, the main risk
considered is that the patient
requires emergency
treatment, which is delayed
due to authentication. This
can cause serious harm;
severity of the risk is
unchanged for all rows and
only the probability changes.

Cost Usability Security PerformanceSafety SSP

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 54

Figure 4-12 shows the dependency diagram summarizing the various factors in the decision to
implement authentication and the relationships between them. It represents an incomplete yet
complex account of how patient harm can be caused.

Figure 4-12: Relationship Between the Various Factors in the Decision to Implement Authentication

The colours of the shapes represent the category to which they refer: purple for characteristics of the
authentication method (for example: false accept rate, grace period), peach for security-related factors
(for example: probability of theft), yellow for costs (for the manufacturer and for the user
organization), green for performance-related factors (for example: average time required to
authenticate, probability that time to authenticate exceeds a certain amount), and blue for usability
issues (for example: ease of use, user frustration). Ovals represent factors that are relatively easy to
provide as inputs to the analysis, while rectangles represent factors that may not be as easy to estimate
directly, and can instead be approximated based on the oval inputs. The arrows between the nodes
indicate causal links. Blue arrows represent an “increase relationship” (an increase in the source node
factor leads to an increase in the target node factor) while orange arrows represent a “decrease
relationship” (an increase in the source node factor leads to a decrease in the target node factor).
Triangles represent potential mitigation strategies: variations to the authentication method to reduce
the strength of the specific link to which they are attached.

At the top of the diagram is “patient harm”, which describes all scenarios where there is an increased
risk of harm to a patient. For example, in the case of the medical device considered in UC2, this node
represents scenarios including but not limited to: the pump infuses the patient with an incorrect
dosage, or the patient’s physiological parameters fall outside the target range but go unnoticed by the
clinician.

We note in the diagram four input arrows to the “patient harm” node. These represent our four main
conjectures about how patient harm may be triggered by authentication-related issues (four plausible
examples out of other possible causes). More specifically:

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 55

• Malicious Use: an attacker intentionally gains access to the device and makes changes to
patient care that put the patient at risk of harm. This may be by directly altering the delivery
of drugs, or by tampering with the alarm functions of the device (e.g. producing excessive false
alarms for patient conditions, or omitting alarms for exhaustion of drug supply in the pump).

• Accidental Use: a user unintentionally gains access to the device and unintentionally makes
changes to patient care that put the patient at risk of harm.

• False Reject: the authentication method falsely rejects a legitimate user thus preventing them
from assisting the patient when needed. For example, due to a card reader failure, or because
the user’s fingers are chapped and yield an error in a fingerprint biometric reading. We note
that this can be the goal of an attacker.

• User Concentration: the authentication method negatively impacts the user’s concentration to
a level that distracts them or affects their ability to respond to an emergency, thus putting the
patient at risk of harm.

Some of the important outcomes of this dependency diagram are:
• Unexpected chains: We note that although mitigation strategies are designed to reduce the

risk of potential harm to a patient, they may also introduce new causal chains that increase
this same risk. For example, to reduce theft of an authentication key, an organization may
enforce stricter protocols. These protocols may reduce the risk of malicious use due to theft
of the key (i.e., the link between nodes “Malicious use” and “P(Theft of the key)” is interrupted
by the mitigation “Stricter rules”). However, at the same time we note a number of arrows
leaving this mitigation strategy (“Stricter rules”) and leading to increased “probability of
forgetting the key”, increased “probability of intentionally sharing the key”, decreased “ease
of use”, etc. – all of which can then lead to patient harm through a different chain.
As another example, to reduce the risk linked to illicit duplication of authentication cards, a
hospital could require that cards be renewed monthly, but this would increase the risk of a
clinician trying to use an expired card, hence risk to the patient.

• Reduction of inputs required for a detailed/quantitative analysis: Usability factors such as user
frustration, user acceptability, ease of use etc. are relatively difficult measures to quantify (one
can define measures for them, but quantifying the effects of their parent nodes on them and
of them on their child nodes would be hard), but the diagram suggests that other factors,
relatively easier to quantify (such as performance measures or estimated costs) might be
suitable proxies – this simplifies and reduces the required inputs to a detailed/quantitative
analysis.

• Clarification of aspects: The preliminary descriptive analysis presented in Table 4-2 contains
broad, general categories, which require further clarification and definition in order to analyse
at a deeper level. For example, what is called “usability” in Table 4-2 was divided in Figure 4-12
into: ease of use, user concentration, user frustration, acceptability, and
traceability/accountability. These sub-categories are closely related (thus all arrows between
them have been removed for simplicity), but still useful to clarify what aspects of usability are
being considered.

We are also working on a deeper analysis from the security viewpoint. Here, rather than speaking only
about security of the device in a general sense, security has been broken down into specific threats.
For each threat, the likelihood is considered. A preliminary detailed analysis is sketched in Table 4-3,
limited to the most promising methods identified via the preliminary descriptive analysis and minimum
requirements described in Table 4-2. These are two token-based methods: RFID and magnetic stripe.

The estimated likelihoods in the table are a first-cut high-level evaluation. The likelihoods have three
different levels: Possible (Red and Amber) and Not Possible (Brown). "Red" (or "Yes") means that there

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 56

is an obvious reason for thinking that the specific attack will be possible. On the other hand, "Brown
(No) means that there are technical or other obvious reasons why this specific attack is not possible
for the selected technology. Last, "Amber" ("May") stands for possibilities, where we closer
investigation is required as simple high-level evaluation does not give a justified result "yes” or ”no".

Table 4-3: Outline analysis of security viewpoint – likelihood of various threats

 RFID Magnetic stripe card

Social engineering methods Possible
E.g. the attacker can borrow the card

Possible
E.g. the attacker can borrow the card

Types to be assessed: phishing, spear, pretexting, scareware, baiting
Malware Possible

High skill attack, mostly necessary to
combine with theft

Not possible

Types to be assessed: adware, bot, bug, ransomware, rootkit, spyware, Trojan horse,
virus, worm, keylogger

Guessing Not possible

Possible
Necessary to combine with other theft

Types to be assessed: brute force, dictionary, rainbow
MITM Possible

Due to radio frequency, fully hidden,
remote

Possible
Necessary to install malicious HW in the

reader
Types to be assessed: replay attacks, eavesdropping attacks, reflection attack, OTP
interception

Server-side attacks Possible Not possible

Shoulder surfing Not possible Not possible

Theft of Authenticator Possible
due to use of physical token

Possible
due to use of physical token

4.3.4 Lessons Learned
The aim of this trade-off analysis is to help system designers (of a medical device, in this case) to decide
on an appropriate authentication method for their device by considering the decision from all
viewpoints. This goal has not yet been reached. However, the work done so far, besides demonstrating
the complexity of the issue, highlights a number of lessons:

• The importance of clearly identifying the aspects that are part of the decision, at an early stage.
• The danger of introducing mitigation strategies “in isolation” without considering their effects

from all viewpoints, as these effects may introduce new hazards.
• Hence, the importance of taking a holistic approach to the decision that considers all

viewpoints.

4.3.5 Further Developments
This trade-off analysis remains under development. We have documented the steps completed thus
far. Ultimately, we would like to describe the authentication trade-off as an optimization problem.
Certain design parameters can be tuned; for example, grace periods (how long a user can keep working
despite failing authentication) or frequency of authentication requests are relevant inputs to this
analysis and may reveal how certain values can sway the choice of authentication. To achieve this,
more detailed analysis of the different viewpoints is underway, with considerations of how factors in
the decision may be quantified.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 57

It is certain that the overall risk will depend on the attack modes likely to be prevalent. Without any
attackers, the only risk reduction gained from authentication is to prevent accidental inputs, while the
risk is increased by the possibility of improperly denied access. Scenarios with different dominant
attacks, e.g., attempts to input harmful command to specific patients vs attempts to harm patients at
random via denial of service, will bring different optimal solutions. So, system designers will need
assumptions (tentative predictions) on the threat environments; or, more likely, tunable
authentication options, with their additional security and safety concerns.

4.3.6 Further Details
The Annexes contain a copy of the complete worksheet documenting the descriptive analysis partially
presented in Table 4-2.

4.4 Probabilistic Analysis of Performance-Security Trade-Offs via SANs (ATM
Use Case Example)

Contributor: City

This section presents an example of a combined analysis of safety and security of a simplified version
of the ATM demonstrator. The analysis relies on a probabilistic model, which is built using the
formalism of “stochastic activity networks” (SAN). SAN is a generalisation of the Stochastic Petri Nets
formalism. The model has been built and solved using the software tool Mobius, developed and
maintained by the University of Illinois at Urbana-Champaign (https://www.perform.illinois.edu/).

The architecture of the demonstrator is described in detail in deliverable D2.3.1. We demonstrate the
combined analysis on a part of the demonstrator, the middleware used for communication between
the drones and the ground services. The middleware uses an implementation of the DDS specification
(Data Distribution Service). The model includes: i) an implementation of the middleware, ii) models of
the drones, i.e. Unmanned Aerial Vehicles (UAVs), which generate legitimate traffic around a number
of topics, and iii) additional sources of traffic, e.g. different other applications that may share DDS with
the ATM infrastructure.

The model also includes models of various malicious activities applied to the middleware and which
may generate malicious traffic, e.g. by increasing the number of new topics, and/or associated data
samples, with their publishers and subscribers, and alter the number of publishers/subscribers of
legitimate topics. A key idea that we explore in the analysis is that the load on the middleware affects
the response time in delivery of all messages, an effect which has been studied, e.g. [Bellavista] with
different implementations of the DDS specification. In the model, the load generated by the publishers
and subscribers is “recorded”, which in turn affects the response time to any message sent over the
middleware.

The number of messages served by the middleware at any moment will vary. Some of the variations
are intrinsic, e.g. due to overlaps in message delivery times, which is bounded for a fixed number of
topics of well-known structure, defined in the middleware.

When the system is under attack, however, the number of topics can increase uncontrollably as
malicious agents may create new topics. The size of the exchanged data (payload) is also unknown.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 58

4.4.1 Aim
The aim of the study is to explore the scale of the problem that can be caused by maliciously created
traffic and also how these adverse effects can be limited by adding generic security controls such as
periodically cleansing the middleware from malicious topics.

A measure of interest in the studies is the probability distribution of the message response times
(PDMRT) for the legitimate messages under different regimes of operation of the middleware. This
distribution will allow us to establish whether the message response time exceeds the hard real time
constraint of 2 seconds defined as an essential requirement for the ATM systems and, if so, the
likelihood of this for a particular regime of operation. Note that violation of the hard-real time
constraint may have safety implications: the drone may become uncontrollable and eventually may be
either lost or may collide with other drones or even planes. Thus, the analysis may also be seen as a
special form of combined safety and security analysis.

The study also includes a comparison of the PDMRT of the “base line” case (when the system operates
in a “trusted environment” without attacks) with the cases when the system is subjected to attacks of
different intensities. Another aim of the study is to look at the effectiveness of additional “security
controls”, e.g. applying an implementation of OMG DDS Security specification
(https://www.omg.org/spec/DDS-SECURITY/About-DDS-SECURITY/), which apart from the obvious
benefits in terms of data integrity, etc. introduces additional computational overheads and may lead
to additional message delays.

4.4.2 Method
A model-based method of analysis is used. We develop a SAN model of the system under study, which
contains a number of parameters. Some of these parameters will define the size of the system, e.g.
the number of legitimate topics, the (average) number of publishers and subscribers, the size of the
payload, etc.

Other parameters model the conditions of operation, e.g. the intensity of the attacks, the effects that
they can have (e.g. the number of additional topics that a successful attack can lead to and the
parameters of each of these additional topics – publishers, subscribers and payload size). Finally, some
of the parameters will characterise the “security controls”. For instance, if “cleansing” of middleware
is used as a security control, additional model parameters are needed to capture: i) the frequency of
cleansing, ii) the time needed to cleanse a replica of the middleware, etc.

The results for each set of model parameters are obtained by solving the respective model using the
solvers offered by Mobius, e.g. the Monte-Carlo simulator. The results are presented in the form of
probability distributions of the response time defined for several intervals of message delays: i) 0 – 0.5
sec, ii) 0.5 – 1 sec, iii) 1 – 1.5 sec, iv) 1.5 – 2 sec, and v) over 2 sec.

A simulation run will consist of running the system for 5000 sec (i.e. over an hour). During each run, a
number of messages are sent/delivered. The duration of each message is established and counted
towards one of the intervals defined above. At the end of the observations, each of the intervals will
contain the number of messages which occurred during the run which happened to have response
time within the respective interval. The probability of each interval for the particular run is then
estimated as the ratio of the number of messages within the interval and the total number of messages
that occurred during the run. Thus, PDMRT conditional on the particular run is established. The PDMRT
established for different runs may differ. At the end of a study (with many runs of the model with the
same values of the model parameters) we compute the average PDMRT, i.e. the probability of each

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 59

interval, with the respective confidence. It is this PDMRT “on average” that is used to compare the
different operational regimes.

4.4.2.1 The model
The model used in the studies is shown below in Figure 4-13.

This is a “composed” model, which includes a number of “atomic” models (shown in black).

In the Annex, we provide further details on the atomic models, the load model, which is the essence
of the combined analysis, and a detailed description of the model parameters and the values assigned
to them in different studies.

Figure 4-13: The SAN “composed” model of the ATM demonstrator.

4.4.2.2 Model parameterisation
An essential part of the presented model is the “load model”, which captures the dependence of the
response time on the load on the middleware. We demonstrate the method using a simple regression
load model. A credible analysis will require a careful parameterisation. A number of empirical studies
are currently under way at TrustPort and at City University to construct a valid load model. These initial
studies are exploratory in nature, and will be made more specific and tailored to the ATM
demonstrator so that the respective results are fully usable. The initial results from this work are given
in the Annex.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 60

4.4.3 Results
Some of the results obtained with the model are presented below in Table 4-4.

Table 4-4: Probability distribution of the message delivery times (PDMRT)

Experiment Measure Taken at: [0-0.5]
secs

[0.5-1.0]
secs

[1.0-1.5]
secs

[1.5-2.0]
secs

[> 2] secs

Experiment 1

Mean 1000 0.0E+00 0.376 0.469 0.784 0.216

Conf. interval 0.0E+00 0.0403 0.0398 0.0242 0.0242

Mean 2000 0.0E+00 0.386 0.592 0.788 0.212

Conf. interval 0.0E+00 0.0264 0.0259 0.0174 0.0174

Mean 3000 0.0E+00 0.404 0.6396 0.790 0.210

Conf. interval 0.0E+00 0.0229 0.0200 0.0125 0.0125

Mean 4000 0.0E+00 0.413 0.6607 0.7901 0.209

Conf. interval 0.0E+00 0.0208 0.0162 0.0109 0.0109

Mean 5000 0.0E+00 0.405 0.613 0.792 0.208

Conf. interval 0.0E+00 0.0173 0.0139 0.0094 0.0094

Each experiment for a given parameterisation was repeated 50 times (“Monte Carlo simulation runs”).
Each run lasted 5000 seconds of system operation. For each of the experiments we estimated the
“average” message response time and the PDMRT at predefined points of simulation time: 1000, 2000,
3000, 4000 and 5000 seconds.

Table 4-4 presents the PDMRT in the form of a cumulative distribution function for one of the
experiments. The mean message response time and a fuller description of the results illustrated in the
table can be found in the Annex.

The results are grouped by the averages of the cumulative probability for the selected time intervals
[0…0.5], [0.5..1.0], [1.0..1.5], [1.5..2.0]. The tail of the distribution, i.e. the probability that the delay is
longer than 2 seconds, is shown under the heading “[> 2] secs”. For this experiment, this value indicates
that the probability of a message delay exceeding the acceptable delay (of 2 seconds) is more than
20%. A figure of this magnitude is unlikely to be acceptable.

4.4.4 Lessons Learned
The lessons learned from this method of analysis can be divided into two groups:

- Building the model event for a relatively small group of attacks required non-trivial effort, which
suggests that an effort to automate the analysis models will bring about significant benefits. This
lesson reinforces the importance of the on-going collaboration between City and Intecs to derive
a SAN model from a system model developed in CHESS. Even a partial success here will drastically
reduce the effort required to construt a SAN model.

- The Monte-Carlo execution time is significant. The decision to show results from only 50
repetitions of each experiment was dictated in part by the long simulation time needed to
complete a simulation run. In another similar study that we have conducted (related to the
Industrial Drive use case), a simulation run is much faster (see Section 4.5 for further details). The

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 61

difference is due to the chosen level of abstraction. Performance (response/delay times related to
individual messages) requires models in which individual messages sent via the middleware are
explicitly represented. Modelling even a short system operation implies a very large number of
messages being sent. Thus, it is the nature of the problem which leads to long simulation time.

4.4.5 Further Developments
The model presented in this chapter focuses on attacks on middleware. Although the model includes
placeholders for attacks on the individual UAV, these are yet to be developed and added to the model.
We envisage attacks on the communication channel(s) between the UAVs and the ground stations,
which may include common threats such as DoS, etc. These aspects of the models will be developed
in our future work.

Of particular interest is to study the impact of adding “DDS security” to the middleware. DDS Security
is a specification, complementing the DDS specification, and implementations of the DDS Security
specification are provided by several vendors. The model will allow us to examine the trade-offs
involved in adding DDS Security: on the one hand DDS security may make some attacks of middleware
more difficult; on the other hand adding DDS security is likely to introduce further message delays,
which may increase the likelihood of violating the threshold for message delays of 2 sec. The current
model already contains the essential parts which will allow us to study the trade-off – the probability
of successful attack (attackSuccessRate) and the additional delays of a message (Start_Delay) – due to
encryption. The missing parts which will make the comparison possible are the load models for the
two cases: middleware without DDS Security and middleware with DDS Security. The empirical work
summarised above on model parameterisation will allow us to construct credible load models and
undertake the outlined trade-off analysis.

A related strand of work has been initiated at BUT after a technical meeting between City, TrustPort
and BUT to look at vulnerabilities in several popular implementations of DDS. The focus of this work is
to establish vulnerabilities in different implementations of the DDS specification, which allow a
malicious agent to launch attacks on specific DDS implementations. We consider known vulnerabilities,
e.g. published in the public vulnerability databases such as NVD - https://nvd.nist.gov/, CVE -
https://cve.mitre.org/, etc. but which may not be patched in the available implementations of the DDS
specification, or unknown vulnerabilities, e.g. established via fuzzing or using some other methods of
searching for vulnerabilities in a chosen implementation.

This work on vulnerabilities of DDS implementations is ongoing and we expect some tangible results
in the future, which will help build a useful model of the entire demonstrator.

4.4.6 Further Details
A fuller version of the study is presented in the Annexes. In addition, we provide a complete
documentation of the presented model which includes a full account of the completed studies with
the probability distributions related to the different modes of operation.

4.5 Analysis of Safety-Security-Performance Trade-Offs via SANs (Industrial
Drive Use Case Example)

Contributor: City

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 62

This section presents an example of a combined analysis of safety and security of a simplified version
of the Industrial Drive demonstrator. The analysis, similarly to Section 4.4, relies on the “stochastic
activity networks” (SAN) formalism.

The Industrial Drive is a demonstrator with distributed architecture – a remote “client” application is
used to send commands to, and retrieve the status of an industrial motor from, a “server” application.
The actual control is achieved by the server application and dedicated hardware. A detailed description
of the architecture of the demonstrator is presented in AQUAS deliverable D2.3.4.

The part of the demonstrator used in the combined analysis includes a model of i) the client
application, ii) the server application, and iii) a “safety function” to guarantee that should the control
motor deviate from its safe operation, the safety function will bring the entire system to a safe state.

The model of the server application is a model of several sub-systems defined in the prototype – the
server (which passes the data received from the client via shared memory for further processing by
the dedicated parts of control), the control (computing the values to be passed to the dedicated
hardware board), and the communication of the board with the motor.

In the model the client and the server applications are assumed implemented without redundancy,
which is typically used to improve reliability and availability. For the safety function, however, we
assume that two channels are used which implement a 1-out-of-2 architecture. That is, each of the
channels on its own is sufficient to bring the system to a safe state should either the client or the server
applications, or both, fail.

In the model we assume that each of the two applications (client or server) either work correctly or
may fail. The model concentrates on software failures. The failures due to hardware faults are implicitly
excluded from the analysis. We assume that the safety functions may fail in two different ways:

- Failing to detect a failure of the client/server application, provided these have failed (i.e. send
incorrect control value to the motor) – false negative.

- Spurious false alarm – i.e. flagging the operation of the system as incorrect while in fact both
the server and the client are working correctly.

Probabilistic parameters are used to characterise the behaviour of the applications such as failure rate
and repair rate to characterise the transitions between failure and repair of the client and the server
applications.

Similarly, we use probabilistic parameters to characterise the behaviour of the two channels of the
safety function. These parameters are:

- Probability to detect a failure of the system when such failure occurs (“coverage”).
- Rate of spurious alarm when the system works correctly. The model of spurious (false) attacks

is somewhat more complicated and in fact includes two parameters – rate of occurrence of a
false alarm and a probability of detecting the false alarm when it occurs. In other words, the
model assumes some form of self-checking capability for the false alarms.

Since two channels are used for the safety function, it is important to include in the model the
possibility of simultaneous, i.e. common cause/mode failures of the two channels. We model explicitly
the occurrence of simultaneous failures of the two safety channels to detect a failure elsewhere in the
system and of a false alarm, which rely on a few probabilistic parameters.

The 2-channel safety function can be in one of the following 4 states:

- The system is OK. This is when the client, the server and both safety channels work correctly.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 63

- The system is in a safe failure state when there is a failure of either the client or the server,
but at least one of the safety channels detects the failure correctly. We assume that in this
case the safety function will carry out the necessary steps so that the industrial drive is brought
to a safe system state (e.g. stop the motor)

- A false alarm occurs when the client and the server application are OK, but at least one of the
safety channels flags the state as a failure. In this case the system will be driven to a safe state,
but this will be unnecessary. False alarms compromise availability of the industrial drive. A high
rate of false alarms, although not dangerous, is clearly undesirable.

- Unsafe failure occurs when either the client or the server applications (or both) have failed
and both safety channels fail to detect the failure. This is a dangerous situation and reducing
its likelihood to an acceptably low level is the primary safety concern.

In the model we consider two types of attacks, which are recognised as important in D2.3.4, namely:

- an attack on the client application. Should an attack on the client application succeed, the
client application is considered to be in a “compromised” state. The failure rate from the
“compromised” state to the failed state of the client is assumed to be typically greater than
the rate of failure of the client from the OK state. The rationale for such a model has been
extensively discussed elsewhere, e.g. [Popov, 2017].

- an attack on the safety function(s). The successful attacks of this kind result in changing the
“coverage” of a safety channel, i.e. the probability to detect a failure, provided there is a failure
somewhere in the systems (client, server or both), or changing the rate of occurrence of false
alarms by the respective channel. A similar model of consequences of an attack was developed
elsewhere, e.g. [Popov, 2015].

4.5.1 Aim
The aim of the study is to demonstrate a method of modelling, which allows one to analyse the safety
of the industrial drive under attacks.

The model includes a model of “prevention”, i.e. models the measures taken by the developers of the
industrial drive demonstrator to reduce the likelihood of successful attacks and the effects of generic
security controls such as “proactive recovery” [Sousa], which minimise the harm caused to the safety
of the system should some of the attacks succeed.

The model is based on the assumption that the modelled system works on a “mission” of a given
duration, say 1000 hours of system operation. We simulate a large number of missions, say up to
100,000, and for each of the missions we record the mission outcome as follows:

- The entire mission is completed successfully (i.e. the system remains in an OK state throughout
the mission) and no anomaly occurs;

- A detected failure occurs before the end of the mission. In this case the mission is aborted
immediately, i.e. before the 1000 hours of the particular simulation have elapsed;

- A false alarm is raised before the end of the mission and the mission is aborted;
- An unsafe failure occurs before the end of the mission and the mission is aborted.

Our aim with the analysis is to establish the probabilities of the 4 outcomes listed above for a randomly
chosen mission. The main concern in the analysis is, of course, the probability of unsafe failure, but the
probabilities of safe failure and especially the probability of false alarms are also of interest as these
lead to reduced availability of the industrial drive.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 64

We look at a range of models to establish the impact of attacks on the probabilities of interest listed
above. These models share the same structure (i.e. consist of the same modelling elements and
relationships), but are parameterised differently to capture different circumstances, for which we
would like to analyse system behaviour. Some of the parameters used in the model reflect the
presence or absence of security controls. Some other parameters reflect the intensity of the attacks,
the likelihood that they will succeed, etc. A full account of the parameters and their purpose are
provided below.

The model includes security controls, such as “cleansing” [Arsenault] of software components which
might have been compromised by an attack. The frequency of such cleansing is a design choice that
the designers should make. Our model offers help with such decisions. It allows one “to see” how
efficiency of cleansing as a countermeasure against successful attacks changes when the cleansing
frequency is increased - this allows for decisions to be taken rationally.

4.5.2 Method
The method used in the study is based on comparing the results from models with different values of
the modelling parameters. Each parametrisation corresponds to a credible system design. Solving each
of the models provides insight about the likely behaviour of the system with different designs. The
models are “solved” via Monte-Carlo simulation. The results are the estimates of the 4 probabilities,
defined above, for a mission of fixed length. These probabilities are different for the different model
parameterisations. The model results would inform design decisions about which design should be
adopted.

Somewhat arbitrarily we chose a mission time of 1000 hours (~ 40 days), and provide estimates for the
probabilities of interest at intervals of 100 hours: 100, 200, etc., which allow one to see how the
probabilities of interest evolve with the mission length.

4.5.2.1 The model
First, we describe the model and provide a brief description of the different modelling decisions. The
structure of the model is shown in Figure 4-14.

Figure 4-14: The SAN “composed” model of the “industrial drive” demonstrator.

In the Annexes we provide further details on the atomic models, how attacks affect system behaviour,
and a detailed description of the model parameters and the values assigned to them in different
studies.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 65

4.5.3 Results
An illustration of the benefits from the method is presented below. Fuller description of the conducted
studies and of the observations are presented in the Annexes.

4.5.3.1 Sensitivity analysis
Let us look at how modelling parameters affect the model behaviour. For instance, let us consider the
case of attacks on the client application only (assume that the attacks on the safety functions are
“impossible”). We would like to find out how the frequency of cleansing the client application (e.g.
rebooting it from a clean, uncompromised copy) will affect the model behaviour. Table 4-5 shows the
results from several studies in which the period of cleansing is varied: 1 hour, 10 hours, 100 hours and
1000 hours.

Table 4-5: Sensitivity analysis results of the effect of cleansing interval on model behaviour with client only attacks.

M
ea

su
re

Ti
m

e
[h

ou
rs

]

Es
tim

at
e

Ex
pe

rim
en

t 6

(C
le

an
sin

g
pe

rio
d

=
1

ho
ur

)

Ex
pe

rim
en

t 7

(C
le

an
sin

g
pe

rio
d

=
10

ho

ur
s)

Ex
pe

rim
en

t 8

(C
le

an
sin

g
pe

rio
d

=
10

0
ho

ur
s)

Ex
pe

rim
en

t 9

(C
le

an
sin

g
pe

rio
d

=
10

00
 h

ou
rs

)

Pr
ob

ab
ili

ty
 o

f
Su

cc
es

sf
ul

 M
iss

io
n

(O
K)

100

Mean value 7.00E-01 4.87E-01 1.65E-01 1.65E-01
Conf. interval 5.10E-03 9.34E-03 2.30E-03 2.30E-03

500

Mean value 1.94E-01 1.27E-01 1.31E-03 1.00E-05
Conf. interval 4.40E-03 6.23E-03 2.24E-04 1.96E-05

900

Mean value 5.34E-02 3.60E-02 3.50E-04 0.00E+00
Conf. interval 2.50E-03 3.48E-03 1.16E-04 0.00E+00

Pr
ob

ab
ili

ty
 o

f
Fa

lse
 A

la
rm

 (F
A)

100

Mean value 1.65E-01 1.38E-01 1.06E-01 1.05E-01
Conf. interval 4.13E-03 6.45E-03 1.91E-03 1.90E-03

500

Mean value 4.85E-01 3.46E-01 1.22E-01 1.20E-01
Conf. interval 5.56E-03 8.89E-03 2.03E-03 2.01E-03

900

Mean value 5.74E-01 4.06E-01 1.22E-01 1.20E-01
Conf. interval 5.50E-03 9.18E-03 2.03E-03 2.01E-03

Pr
ob

ab
ili

ty
 o

f
Sy

st
em

 S
af

e
Fa

ilu
re

 (S
F)

100

Mean value 1.22E-01 3.40E-01 6.57E-01 6.57E-01
Conf. interval 3.65E-03 8.85E-03 2.94E-03 2.94E-03

500

Mean value 2.90E-01 4.80E-01 7.90E-01 7.93E-01
Conf. interval 5.05E-03 9.34E-03 2.53E-03 2.51E-03

900

Mean value 3.37E-01 5.08E-01 7.90E-01 7.93E-01
Conf. interval 5.26E-03 9.34E-03 2.52E-03 2.51E-03

Pr
ob

ab
ili

ty
 o

f
Sy

st
em

 U
ns

af
e

Fa
ilu

re
 (U

SF
)

100
Mean value 1.23E-02 3.48E-02 7.23E-02 7.24E-02
Conf. interval 1.23E-03 3.43E-03 1.61E-03 1.61E-03

500

Mean value 3.04E-02 4.72E-02 8.72E-02 8.76E-02
Conf. interval 1.91E-03 3.96E-03 1.75E-03 1.75E-03

900

Mean value 3.55E-02 5.01E-02 8.72E-02 8.76E-02
Conf. interval 2.06E-03 4.08E-03 1.75E-03 1.75E-03

Increasing the intervals of cleansing has detrimental effects on model behaviour: the probability of
surviving a mission decreases while the probabilities of all anomalies go up. While this is not surprising,
the insight that the model brings is the magnitude of the effect, which may be useful in making a
decision about what interval of cleansing to deploy in the demonstrator.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 66

4.5.3.2 A discussion
The Results presented in the section above (and detailed further in the Annexes) indicate that the
effects of the 2 types of attacks may have noticeable consequences. The effect of a successful attack
on a client application is not surprising. The attacks on the safety function offer some interesting
observations. If the integrity of the safety function is compromised, the negative effects may be very
dramatic. The increased probability of unsafe failure may easily invalidate any safety case claimed for
“trusted environment”. Even unlikely attacks may increase the probability of unsafe failure
significantly.

In the Annexes, we present results related to false alarms, caused by attacks on the safety function
channels. These are particularly unpleasant. Even if one can design very good safety functions and
practically eliminate the false alarms in trusted environment, the effort may become futile due to
carefully crafted attacks on the safety functions. It seems that in these circumstances “cleansing” is
particularly desirable as a control to counter the effects of cyber-attacks.

4.5.4 Lessons Learned
The lessons from applying this method of combined analysis are yet to be learned via detailed scrutiny
of the findings included in this study. By design this method operates at a high level of abstraction and
many implementation details have so far been ignored or resolved in a way that allows for solving the
model fast. For instance, instead of modelling the individual commands exchanged between the client
and the server applications, which would make a solution via Monte Carlo simulation time consuming,
the model concentrates on the essential anomalous events that may occur in operation – failures,
successful attacks and resuming normal operation. With the chosen measures of interest (the four
probabilities for a randomly chosen mission), the model behaviour after an anomalous event occurs
(system failure or false alarm) is discarded. Should a different measure of interest be chosen, however,
e.g. the interval between unsafe failures (within a mission) or something else, abandoning the mission
after the first anomalous event may need to be revisited, which in turn may lead to much longer
simulation time.

4.5.5 Further Developments
The model currently only covers a fraction of the use case – the client application, the server
application and the safety functions. These are modelled at a relatively high level of abstraction
ignoring i) the specifics of the design choices made by the developers of the demonstrator, and ii) some
important implementation details of the security controls included in the model. For instance,
“cleansing” is modelled simplistically assuming that it can be executed “instantaneously” in a single
atomic operation which does not affect availability of functional blocks that are subjected to cleansing.
This assumption seems quite plausible for cleansing the safety functions, especially if cleansing can be
achieved by overwriting the values of a few variables held in an SD card. Cleansing the client
application, however, is likely to require a significantly longer time, e.g. to reinstall/restore it on the
remote computer. During such “cleansing” the client application will simply be non-operational and
must be designed to allow for cleansing, e.g. during the periods of maintenance. If high availability is
required (especially in the case of a manufacturing line expected to operate 24x7), the design of the
client application must include redundancy, too: the cleansing will then follow the suggestions made
by many to use “intrusion-tolerant” designs. In such cases the models of client application will have to
be extended and will follow our previous work [Popov, 2017].

The current model includes some rudimentary elements of performance penalty due to successful
attacks, but this is an area for significant improvement in the future so that the analysis includes

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 67

assessment of the probability of violating the duration of the control loop of 62.5 μs, either due to
accidental or malicious events.

Finally, the model does not include all attacks envisaged in the demonstrator (see AQUAS deliverable
D2.3.4), including the work previously done in the SESAMO project by the City team on triplicated
communications between the sensors of the motor and the controller.

In the next period of the project the model will be extended to include the essential functional blocks
and all attack types envisaged in the demonstrator.

4.5.6 Further Details on the Model
Full details of the SAN model, the conducted studies and of the results obtained with the model to
date are included in the Annexesto this section.

4.6 Combined Analysis of Safety and Performance to Support Design Space
Exploration and Technical Solutions Comparison (Space Use Case Example)

Contributor: Univaq

The proposed method combines performance, safety and (possible) security analysis at a system-level
of abstraction, considering schedulability and possible isolation alternatives. The utility of the
approach is explored by analysis of safety/performance trade-offs in the space multi-core use case
(UC5). It is also proposed to reuse the approach in the ATM use case (UC1).

The method involves the use of the Hepsycode methodology and framework [Hepsycode] with respect
to performance analysis, while taking into account safety (fault identification and injection to evaluate
possible critical paths) and security (impact of cryptography algorithms on performance). The whole
framework drives the designer from an Electronic System-Level (ESL) behavioral model, with related
non-functional requirements, including real-time and mixed-criticality ones, to the final HW/SW
implementation, considering specific HW technologies, scheduling policies and Inter-Process
Communication (IPC) mechanisms. Through the execution of different steps, including a system-level
Design Space Exploration (DSE) approach that allows the related co-design methodology to suggest an
HW/SW partitioning of the application specification and a mapping of the partitioned entities onto an
automatically defined heterogeneous multi-processor architecture, it is possible to proceed with
system implementation.

UC5 involves aerospace application code running on a LEON3 multi-core processor system. Timing and
code safety analysis are essential to prove that the code can be safely scheduled and run under all
operating circumstances.

4.6.1 Aim
The main goal of this work is to present a combined analysis of performance/safety/security to support
design space exploration and technology solutions comparison. The main idea is the modelling of a
space multi-core application as a processes network where processes can communicate with each
other by means of unidirectional and blocking channels. Such a Model of Computation (MoC)
guarantees determinism and synchronous communications, allowing a deterministic data flow from
the input triggers to the final output feedbacks.

The main problem is related to the analysis of performance/safety/security trade-offs on a multi-
processor system (i.e., an unpredictable disrupted system where interferences are due to HW/SW
components) considering schedulability and isolation methods.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 68

The proposed solution is based on a simulation approach to evaluate safety/performance impact
considering various HW/SW architectures. A semi-automatic Design Space Exploration (DSE) step
involves several stages, from the definition of the solution space, the encoding with respect to the
decision variable space, and the definition of the objective functions to solve a Multi-Objective
Optimization Problem.

Starting from several system-level models (i.e., Application Model, Partition Model and Platform
Model), the DSE exploits a search method that performs the “HW/SW Partitioning, Architecture
definition and Mapping” (PAM) step, by using a genetic algorithm that allows one to explore the design
space looking for feasible mapping/architecture items suitable to satisfy imposed constraints
[Muttillo]. Then, a “Timing HW/SW Co-Simulator” [Ciambrone] considers the suggested
architecture/mapping items to actually check for timing constraints satisfaction. The whole
methodology is shown in Figure 4-15.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 69

Figure 4-15: Hepsycode Methodology

4.6.2 Method
The Hepsycode framework and methodology [Hepsycode] drive the designer from an Electronic
System-Level (ESL) behavioral model, with related non-functional requirements, to the final HW/SW

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 70

implementation. In particular, the system behavior modeling language introduced in Hepsycode,
named HML (HEPSY Modelling Language), is based on the well-known Communicating Sequential
Processes (CSP) Model of Computation (MoC). Such a MoC allows modelling of the behavior of the
system as a network of processes communicating through unidirectional synchronous channels. By
means of HML, it is possible to specify the System Behavior Model (SBM), an executable model of the
system behaviour, a set of Non Functional Constraints (NFC) and a set of Reference Inputs (RI) to be
used for simulation-based activities. Through the execution of several steps, including metrics
evaluation and estimation activities and a system-level Design Space Exploration (DSE) approach that
allows the related co-design methodology to suggest a HW/SW partitioning of the application
specification and a mapping of the partitioned entities onto an automatically defined heterogeneous
multi-processor architecture, it is possible to proceed with system implementation. Hepsycode uses
Eclipse MDE technologies, an extension of the standard SystemC simulator and an evolutionary genetic
algorithm for partitioning/mapping activities, all integrated into a (semi)automatic framework that
drives the designer from a system-level specification to a final solution, considering also Hypervisor-
based SW Partitions in the evolutionary approach and timing HW/SW co-simulation runs.

So, the HEPSYCODE starting point considers different HW-based, OS-based, and Hypervisor-based
solutions (both in the research and industrial domains), and uses specific modelling technologies,
metrics evaluation and estimation activities, and a specific HW/SW co-simulator integrated into the
Hepsycode Co-Design methodology and framework. Then, it is possible to find suitable sub-optimal
solutions for the HW/SW partitioning problem by suggesting both the platform and the mapping for
the specific mixed-criticality and real-time application, exploiting hypervisor-based SW partitions, also
performing schedulability analysis and final validation activities to guarantee bounded errors.

4.6.3 Results
Various activities have taken place during the past months:

• UC5 modelling activities: starting from a CHESS model, UNIVAQ has adapted the application
scenario to the HML. The application is composed of 7 processes (as shown in Figure 4-16),
each of which matches with a CHESS component.

Figure 4-16: HEPSYCODE Process Network Model

• The second step has involved the extraction of several metrics by means of simulation
activities. The considered metrics are: concurrency (i.e., an indication of the extent to which
the set of process and channel pairs can potentially work concurrently), communication (i.e.,
the amount of data exchanged between process pairs), workload (i.e., processor utilization)
and real-time behaviour (i.e., estimated WCET). In the context of UC5, some preliminary

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 71

results show that the channel pairs [stim_scrub_channel, wdog_display_channel] and
[stim_wdog_channel, tmtc_out_display_channel] are always concurrent, so the process pair
[MEMORY SCRUB, WDOG] and [WDOG, tmtc_out channels] shouldn’t share the same link.
With respect to processes:

o SCRUB is 33% concurrent with WDOG, TMTC_IN and TMTC_OUT
o WDOG is 66% concurrent with TMTC_IN and TMTC_OUT
o TMTC_IN and TMTC_OUT are 100% concurrent (it is then possible to consider the

introduction of a PIPELINE)
• The possible combined Safety/Security/Performance analyses are related to two different

scenarios, as shown inFigure 4-17. The first one considers two safety-related subsystems, the
non-critical subsystem, where the Telemetry/Telecommand application sends satellite
information to the earth station, and the critical one, related to system monitoring and fault
detection/avoidance.

Figure 4-17: Hepsycode AQUAS Version 1 (No Security) - LEFT, Hepsycode AQUAS Version 1 (with Security) - RIGHT

• Starting from these activities, different failure paths can be investigated in order to check
safety/performance anomalies, as shown in Figure 4-18. Finally, introducing security issues can
degrade performance and, at the same time, negatively affect system execution, thus affecting
the overall system safety.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 72

Figure 4-18: Hepsycode Performance/Safety Analysis - LEFT, Hepsycode Performance/Safety/Security Analysis - RIGHT

• The DSE and simulation activities are work-in-progress steps, while the different paths and
failure scenarios will be evaluated with focus on possible architectural and behavioural
improvements.

4.6.4 Lessons Learned
We have released a framework and related tools that are able to model several applications injecting
safety/security/performance requirements into the whole design step, with focus on simulation
activities. The tools are able to extract information related to functional and timing issues, while the
input model can be used to check possible erroneous/critical behaviours (e.g., deadlock, starvation,
functional bottlenecks, etc.).

The Design Space Exploration tries to find possible allocation/binding alternatives, but this is a critical
issue while the strict safety/security requirements can affect performance, decreasing response and
execution times. The use of other external tools (i.e. A2K ITI for schedulability analysis, CODEO/PikeOS
for SW partitioning improvements, CHESS for a Model-to-Model semi-automatic comparison,
SystemC-TLM for timing simulation) can offer the possibility to decrease design time while improving
system implementation reliability. Verification and validation activities on a real board environment
are then needed for different aspect, from methodology refinement to system components
improvement, while the Design Space Exploration can help designers to guarantee the fulfilment of
input requirements. The use of Hypervisor technologies (e.g., PikeOS) will guarantee a behaviour
compliant to certification according to relevant standards, but the qualification of such technologies is
not easy to obtain.

4.6.5 Further Developments
The Hepsycode approach will be extended to the ATM use case (UC1) and collaboration with other
partners.

4.6.6 Further Details
The complete Hepsycode methodology and approach is provided at http://www.hepsycode.com/.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 73

4.7 Combined Analysis of Security and Performance to Support the Product
Lifecycle using SSDLC and TTool (Industrial Drive Use Case Example)

Contributors: Trustport and MTTP

Safety, security and performance are mostly interdependent in the product life cycle management and
therefore the task is to find a reasonable balance between them. Combined Analysis is based on deep
analysis to define the security parameters (e.g. encryption, integrity, confidentiality) and security level
(e.g. key lengths) based on the most current norms, standards, risk analysis, and best practice together
with the modelling and verification of performance analysis in the TTool toolkit. We demonstrate the
approach via application to the industrial drive demonstrator (UC4) to assist co-engineering within the
demonstrator implementation.

UC4 concerns an Industrial Drive for electric motion control. Within AQUAS, a virtual HW prototype of
the whole system will be created that shall be used to verify performance constraints together with
safety and security requirements for a representative set of scenarios.

With the Software Development Life Cycle Management Tool (SSDLC) the product security
requirements (based on standard IEC 62443 and best practices) were implemented. This approach
discovered interconnections between the security requirements (security) and their impact on the final
system response (performance) during the development stage.

Combined Analysis of Security and Performance to Support the Product Lifecycle using SSDLC and
TTool was used to cover the whole product development cycle from security and performance
requirements point of view. The implementation of requirements in SSDLC and TTool also follows the
V-model starting from set of requirements continued through design of implementation and
verification phase.

4.7.1 Aim
The goal of this combined analysis is to create a way to establish a compromise between security and
performance requirements.

An interaction between security and performance was investigated for potential trade-off decisions
(which security mechanisms such as encryption can be used under consideration of performance
resources) by the Combined Analysis and using SSDLC and TTool.

4.7.2 Method
Figure 4-19 helps introduce a methodology of combined analysis and an approach to the
implementation of interaction points in practice. The standard ISA/IEC-62443-3-3 and IEC62443-4-2
together with NIST 800-82, IEC 27001 and COBIT were implemented into SSDLC.

We are using an extensive Secure Software Development Life Cycle catalogue containing security
requirements together with the advanced modelling framework TTool based on UML/SysML-Sec for
performance analysis.

For performance analysis, the complexity curve of certain algorithms was calculated. The simple model
(demonstrator) in TTool was used for verification of combined analysis. Thanks to the security and
performance modelling and analysis techniques supported by TTool, it was possible to model the
trade-off between security and performance to support the product life cycle and different security
levels.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 74

Figure 4-19: Combined Analysis of Security and Performance to Support the Product Lifecycle using SSDLC and TTool

4.7.3 Results
We provide deep analysis to define the security parameters and security level based on the most
current norms, standards, risk analysis, and best practice together with the modelling and verification
of performance analysis in the TTool toolkit.

Security level Algorithm for SL Number of cycles

SL1 AES 128 440

SL2 AES 256 615

SL3 AES 512 970

SL4 AES 1024 1675

Figure 4-20: TTool – results security algorithm vs. performance

Table 4-6: Results - Computation time according to different security levels and algorithms

10

435
610

965

1670

0

500

1000

1500

2000

NONE AES 128 AES 256 AES 512 AES 1024

CP
U

cy
cl

es

CPU1 - encryption

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 75

Title Security level Algorithm/Method for SL
Computation time [µs] for 400
MHz

Non-repudiation /
authentication

SL1 RSA 1024 3.85

SL2 ECDSA P-256 TBD

SL3 ECDSA P-384 TBD

SL4 RSA 2048 TBD

Communication
integrity

SL1 SHA-1 1.95

SL2 SHA 224/256 4.39

SL3 SHA 384 5.54

SL4 SHA 512 5.54

Using encryption

SL1 AES 128 1.09

SL2 AES 256 1.54

SL3 AES 512 2.43

SL4 AES 1024 4.19

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 76

Table 4-7: Performance in terms of cycles depending on the clock divider

Master
clock

T1/T2 CPU/Bus output Output time

[MHz]
Clock
divider

Width
[Bytes]

Nb of
samples

Name Utilization
 Cont. delay
on MainBus_0

Cycles

200 1 40 1

CPU2 0.490234 15

1024 CPU1 0.480469 32.5

MainBus 0.0195312 -

200 2 40 1

CPU2 0.490272 15

2056 CPU1 0.480545 34.5

MainBus 0.0233463 -

200 3 40 1

CPU2 0.490291 12.8571

3090 CPU1 0.480583 30.8571

MainBus 0.0252427 -

200 4 40 1

CPU2 0.490348 15

4144 CPU1 0.480695 37

MainBus 0.030888 -

200 5 40 1

CPU2 0.489856 15

5126 CPU1 0.480101 34.9

MainBus 0.0195084 -

The combined analysis of Security and Performance using SSDLC and TTool was also used for
Interference Analysis in UC4; see Figure 4-21.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 77

Figure 4-21: Inference analysis using SSDLC and TTool

4.7.4 Lessons Learned
This approach helps when there is an investigation of whether or not the solution might move to the
next security level (e.g., because of new regulations or others) without any necessary additive
implementations or tests. We reveal that each security level (e.g. with higher key sizes) slows down
the speed (e.g. encryption speed in cycles per byte) by particular exact value.

More generally, this approach helps to show the relation between each security level independently
on hardware and implementation. This should serve in the decision processes in PLC phases before
design or for example after regulation (law) change. It is obvious that it is necessary to think about the
performance and security parameters already in the early stages of PLC as it might reduce significant
number of issues caused by insufficient number proposal, which will lead to going back in PLC.

4.7.5 Further Developments
The combined analysis will be extended to the other security requirements (e.g. non-repudiation/
authentication with The Elliptic Curve Digital Signature Algorithm (ECDSA) or different key sizes), which
significantly influence the performance (e.g. delay for emergency stop).

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 78

4.8 Failure Modes, Vulnerabilities and Effect Analysis (FMVEA) (Industrial Drive
Use Case Example)

Contributor: AIT

The proposed method uses Failure Modes and Effects Analysis (FMVEA) for combined analysis of safety
and security at the concept phase. The approach is illustrated via application to the industrial drive use
case (UC4).

FMVEA was devised as a security extension of the well-introduced safety-related analysis method
FMEA (Failure Modes and Effects Analysis). The FMVEA tool has been developed as a research
prototype in previous projects and now supports automated safety and security analysis by applying
rules to a model of the system or specific component under consideration.

4.8.1 Aim
The goal of FMVEA is to provide an integrated analysis method comprising safety and security. The
tool prototype, whose application is planned in UC4, enables a high degree of automation and reuse.
A functional model of the item under consideration (system, subsystem, component) is imported or
created, and enhanced with dependability attributes. Based on a previously created database of safety,
security, and performance rules, an automated co-analysis of the model is started with the capability
to immediately adapt the model to necessary safety, security or performance mitigation measures.
The automated co-analysis can immediately be repeated so that the effect on the other quality
attributes (violation of rules) can be seen immediately, and countermeasures can be taken.

4.8.2 Method
FMVEA (Failure Modes, Vulnerability and Effect analysis) is an extension of the well-established Failure
Mode and Effect Analysis (FMEA) and was developed for the application on connected industrial
systems. Additional evaluation was done on automotive systems and comparison with other safety &
security co-analysis methods.

The basic concept behind FMEA is that, based on a system mode, failure modes for elements are
identified and the consequences on the overall system are determined. FMVEA extends this with a
parallel and even combined consideration of failure modes and threat modes, e.g. not only how a
component could fail but also how a threat agent could misuse a component.

A tool has been developed to implement this methodology. The system is modelled in a Model-Editor
and the threats and failure modes are described using simple grammar, allowing users to specify
expected behaviour or potential risks.

Identified threat and failure modes can be taken from the tool and ranked based on their likelihood
and combined with the impact of the system level effects to determine risks and decide on necessary
risk treatment options. In the current implementation, risk assessment and risk treatment decision
would be outside of the tool.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 79

Figure 4-22: System-Model

Figure 4-22shows the diagram from the use case modelled in FMVEA. On the left side of the Figure are
related actions such as “Create Environment”, “Create Node” and “Create Connection”. An
Environment can be considered as a container, which provides general attributes to its children.
Attributes can be focused on security and safety. The attributes of an element are directly displayed
below the diagram.

Figure 4-23: Defined Rules

Figure 4-23 displays the rules which should be used to analyse the use case diagram. From the left to
the right you can see the name of the rule, then a short description and the “Rule”. The “Rule”-column
is the most important one, because here, the actual rule for the analyzer is defined.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 80

4.8.3 Results

Figure 4-24: Analyzer Results

Figure 4-24 displays the results of the use case analysis. The previously created rules were applied on
the created diagram. From the left to the right, it’s possible to see the applied rule and the results of
the specific rule on the diagram. The affected elements and connections can be viewed in the diagram
if the user clicks on the “Show”-button to the right. Inside the diagram, the affected elements and
connections get highlighted by a red border as displayed in Figure 4-25.

Figure 4-25: Results shown in the System Model

Figure 4-25 shows the affected elements of the fifth rule. The definition of the first rule says that if
there is a connection between the “VtoX Gateway” and the “Internal Gateway” which has the
attributes “Encryption=false”, “Throughput < 64 bytes/frame” and which crosses the “Root
Environment/Boundary” (leaves secured environment). As can be seen in the diagram, both attributes
are fulfilled and the connection leaves the environment/boundary of the vehicle. The observed
connection and the influencing elements like the gateways and the boundaries are marked red inside
the diagram.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 81

4.8.4 Lessons Learned
Revision of the rule-grammar

When creating the rules, it has been noticed that many formulations are very cumbersome. This is
because no negation of statements is possible. Furthermore, it is necessary that more generic rules
can be defined. This would improve the reusability of rules. Often elements and connections are
created, which fall under certain categories. These categories should also be able to be examined by
rules. This results in generic analyses that can be made simpler and more comprehensive.

Separate diagrams for logical and physical elements

In this use case, an attempt was made to map both logical and physical aspects of a system to a single
diagram. This approach has some disadvantages, as many logical aspects cannot be fully reflected in
the physical image. This in turn means that essential information can be lost. Therefore, in a
subsequent version of the tool, the logical and physical representation should be separated. The
respective elements in both diagrams are then logically linked to each other by a shared Id. A basic
rule here is that there must always be a physical one for each logical element, but a physical element
can be modelled but not represented in the logical diagram.

4.8.5 Further Developments
SYSML Import/Export

As described in the previous section, some adjustments are made to the editor. The separation of the
representation into two different diagrams also allows the editor to adapt to two standardized diagram
types. A SysML diagram is implemented for the physical representation and a data flow diagram for
the logical representation. For both diagram types, an import export function is also implemented after
the implementation, so that existing models can be imported, or created diagrams can be exported.

Predefined Categories and Diagram Elements

When creating a diagram, the user has to spend a lot of time defining the individual elements and their
connections as well as their properties. It has turned out that most elements and connections within
a diagram occur multiple times. Therefore, a menu is to be implemented in which the user can
predefine elements and connections and subdivide them into categories. These objects can then be
easily used in the diagram, which saves a considerable amount of time.

ReqIF Export Interface for GSFLOW

In addition to the development of the "FMVEA" tool, the tool "GSFlow" is also developed. GSFlow is a
standard management tool designed to make it easier for the user to meet public safety / safety
standards. Requirements are then to be generated from the identified risks in a system, which can
then be subsequently exported in the "ReqIF" format. In addition to this general export function, an
additional interface is created which allows these requirements to be automatically incorporated into
GSFlow.

4.9 Combined Analysis of Safety, Security and Performance in the Design Stage
(Space Use Case Example)

Contributors: All4Tec, Intecs and Tecnalia

The goal of this proposed method is to allow early validation of the security, safety and performance
requirements coming from the Requirements stage, identify new safety, security performance

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 82

requirements (e.g. according to the introduction of mitigation solutions), check the feasibility of the
updated set of requirements, to properly feed the implementation phase, and give a model-based
support to be able to determine if the triggering of a trade-off meeting should be enabled.

The method performs safety, security and performance (SSP) analysis upon the defined model, by
using seamless integrated tools. The method also enables concept-aware analysis by allowing tracing
how the entities defined in the models, design and/or analysis-specific ones, are related to the SSP
concern(s), to monitor their relationships (interference), evolutions, so to support the identification of
the need of trade-off decisions and co-engineering meetings.

4.9.1 Aim of Use Case Example
A model of the software architecture has been provided for the space use case (Use Case 5), by
considering functional and safety, security and performance requirements, to support the design
stage.

We recall that UC5 concerns the evaluation of software running in a multi-core processor supported
by a well-known hardware architecture that is commonly used in space projects [Deliverable 2.2].

The proposed methodology supports the Design stage for the software system and the allocation of
software components to the target platform. The intended usage scenario is expected to determine
new requirements for the development stage, raise SSP conflicts warnings to be solved in specific
trade-off meetings, to finally build a baseline of the requirements to feed the implementation stage.

4.9.2 Method
First a model of the software design by using the CHESS modelling language and toolset is provided. In
particular software components satisfying functional and performance requirements are designed,
together with the allocation of software components to processors cores. Then model-based
schedulability analysis of the designed software architecture is enabled in CHESS to check the feasibility
of the solution.

The CHESS model has been imported in the Safety Architect tool to conduct local safety analysis at the
design level. The refined model (e.g., adding safety mechanisms) is complemented with the Cyber-
Architect tool for the security analysis. As result of this safety-security analysis, fault tree analysis
models are produced for the feared events.

Then, the Concept-aware analysis tool by Tecnalia was applied on the produced fault tree analysis
models to create high-level reports on the interference of safety and security aspects, as well as in the
interference of the logical, physical and functional layers of the design.

Figure 4-26 depicts the previously presented interactions.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 83

Figure 4-26: Description of the interactions

4.9.3 Results
Some of the results obtained are presented below. The following figure shows how the CHESS models
contain time-related annotations that are used to check if safety requirements related to performance
are satisfied; further details about the CHESS model of the Space Use Case Example are available in
D2.3.5 Section 4.1.2.

Figure 4-27: Software architecture

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 84

Figure 4-28: Schedulability analysis results

Thanks to the prototype bridge between CHESS and Safety Architect, the software architecture was
imported from the CHESS model to Safety Architect. A safety analysis was conducted in Safety
Architect as explained in D2.3.5.

For the needs of the demonstration of the safety-security combined analysis and to feed the concept-
aware tool of Tecnalia, a scenario of software architecture evolution, from a very basic model to the
current model containing safety and security barriers, was proposed. Safety and security analyses were
performed at each evolution of the architecture and fault trees were generated. Finally, a safety-
security co-analysis was realised in Safety Architect. These fault trees were exported to be exploited
by Tecnalia’s tool. Figure 4-29 presents an example of a safety-security tree and Figure 4-30 shows a
safety-security tree exported in OpenPSA format and integrated tags on the node of the tree to
indicate their related-viewpoint (safety, security or safety-security) and their related-type (logical,
physical, functional or generic).

Figure 4-29: Example and part of a safety-security tree

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 85

Figure 4-30: Example of a tree exported in OpenPSA format with tags on the nodes

Then, after applying Safety and Cyber-Architect, the concept-aware analysis is used as shown in D2.3.4.

4.9.4 Lessons Learned
One of the lessons learned is related to the importance of the evolution of the assets in the design
stage. Indeed, after several analysis iterations, the engineering teams (safety, security) produced
analysis results such as fault trees, FMEA, attack trees or threat scenarios. The number of artefacts
contained by these analysis results can indicate the advancement of the workload in each engineering
field. Then, if it overcomes an arbitrary threshold or if the variation is important, it may trigger a co-
engineering meeting, to encourage this practice and specially to perform co-engineering as early as
possible. By analyzing how the assets evolved during the use of Safety- and Cyber-Architect tools, it
was possible to prototype an enhancement of the Concept-aware analysis tool to provide reports on
the evolution. A screenshot is presented below showing how the interference of safety and security
appears at a given point in the evolution. It is being investigated how this evolution can happen within
the design stage but also can continue in next stages after some iterations.

Figure 4-31: Output of Concept-aware analysis tool

4.9.5 Further Developments
Further developments concern the tooling (WP4) to support this kind of combined analysis. One of the
objectives is to enhance the safety-security analysis. Firstly, this requires improving the import of the
security artefacts from Cyber Architect to Safety Architect. Next, the safety-security analysis is
presented via the safety-security trees then it is extended to the FMEA with the creation of a FMVEA
table.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 86

The concept-aware analysis and tool will be extended to requirements and to the entities available in
the CHESS architecture model.

Support for traceability between architectural model-level entities and safety/security/performance
requirements will be enabled in the CHESS environment; a traceability view will also be provided to
support the various experts involved in the interaction point triggered by schedulability analysis result,
to understand the requirements actually involved in the context of the current architecture under
review.

The complete models are provided in the Annexes.

4.10 Translation Validation: Checking C Code Conformity (Rail Use Case Example)
Contributor: CEA

The proposed method provides an essential verification step in the final stage of an iterative process
of refinement. The refinement process transitions from an initial, high-level, abstract behavioural
specification to an implementation, progressively incorporating combined safety, security and
performance (SSP) requirements. This final stage completes the validation of the translation of a formal
model to compilable source code and involves functional contract generation and verification with
static code analysis.

To illustrate the process, we chose a simplified but representative version of the cyclic redundancy
check (CRC) used in the railways use case (UC3) to test the integrity of received data. We recall that
UC3 is COPPILOT, a safe controller for screen doors separating a platform from the tracks of metro rail
systems. The development of the CRC follows the B method: a formal specification is refined into a
formal algorithm, and we formally prove that the latter indeed satisfies the former. Finally, the formal
algorithm is translated to C code, and the result is integrated into the rest of the software
development.

A refinement verification method was developed to analyze the conformity of C code generated by the
Atelier B (development framework of ClearSy supporting the B method) with the specifications of UC3
expressed in the B0 refinement language.

To reach that objective, the soundness of the approach and the translation of B0 specifications to ACSL
specifications (https://frama-c.com/acsl.html) have been studied by CEA. The method was also applied
by CEA to a representative example supplied by ClearSy using the Frama-C tool (developed by CEA).

4.10.1 Aim
The B method is a design process to develop software using B notations and formal proofs. The
software development starts from abstract specifications of the software behaviours expressed in the
B language. These specifications are iteratively and manually refined, progressively incorporating SSP
requirements, until they only use B0 notations that become directly translatable into the programming
C language. Atelier B performs the formal proof of each of these successive refinements and translates
the last one into C source code to compile.

The goal of the proposed method is to provide the missing link (formal proof) between that C source
code and the last refinement written in B0 language. This is to ensure that the obtained C source code
correctly represents the formal algorithm. Applying such a method guarantees, through formal proofs,
that the resulting C source code complies with the B0 specifications and, as a side effect, with the initial
abstract specifications. Indeed, translation validation is not covered by the B method, but is crucial in

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 87

the safety process: an error in the translation would lead to a software not executing the intent of the
developer, represented in the B formal model (traceability is broken).

The current conventional way of validating the translation is to have two separate software teams
develop a translator satisfying some translation requirements designed by the validation and
verification (V&V) team. From a given formal algorithm, the translation is accepted only if both
translators yield the exact same result (up to spaces).

In order to ease both the validation of translation and the development of translators, we propose to
translate the formal algorithm into a pure mathematical description of its effects in the ACSL language.
The result is formally checked against its actual translation with the Frama-C platform, which allows
one to prove that the obtained C source code satisfies the ACSL description.

While the conventional way relies fully on a syntactic correspondence, this new strategy enables
semantic validation, which allows more flexibility in the translation to C code (optimizations,
compositions, etc.). In the end, only one translator from B to C has to be developed, and translation
validation could be automatically ensured by Frama-C, relieving the whole process from the V&V team.

4.10.2 Method: Verification of conformity of Generated C code
Verification approach

The verification the conformity, with B0 specifications, of the C code issued by the code generator of
the Atelier B (from the specifications of the software implementation expressed in the B0 refinement
language) can be decomposed in two successive steps:

1. First, for each B operation, their B0 implementation must be translated into a function
contract written in ACSL, similarly to the C code generator of the Atelier B that translates
each B0 implementation of an operation into a C function.

2. Then, the WP plug-in of Frama-C tool (https://frama-c.com/wp.html) has to prove that all
C functions satisfy their own ACSL function contract.

To completely prove that the generated C code refines the B0 implementation, an extra verification
ensuring the absence of run-time errors (while executing the compiled C code) has to be done. This
last verification was considered out of scope of this railway case study, even though it can be done
with the EVA plug-in of Frama-C (https://frama-c.com/value.html).

Verification method

In order to reach that verification objective, Frama-C tool and the translation principle of B0
implementations to ACSL function contracts have to be considered.

The WP plug-in performs deductive verifications based on weakest precondition computation.

That technique provides proofs of the correctness of C-functions against their ACSL specifications. The
proofs are modular: a function is verified independently from its calling context, and only from its C
source code and the specification of the other functions. For each ACSL code annotation, the WP plug-
in generates a bundle of proof obligations (i.e., first-order logic formulae) that entail their correctness.
Then, these proof obligations are submitted to the automatic theorem prover Alt-Ergo or the Coq proof
assistant. Notice that many other provers (such as Z3, CVC4...) can also be used via the Why3 platform.

The translation principle from B0 language to ACSL function contracts defines for each B0 operation
two ACSL clauses:

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 88

1. an ‘assigns’ clause specifying that only one output (of the related B0 operation/C function)
is allowed

2. an ‘ensures’ clause with a ‘predicate’ defining the constraint between these outputs and
the inputs (of the related B0 operation/C function).

In order to verify that the C implementation conforms to the B0 implementation, contracts of the
directly called operations have to be supplied and verified separately in the same way. This verification
is modular and the complexity of the formal proofs do not increase by ascending in the call graph of
the operations unlike most of the deductive approaches. That looks like a unit verification where the
precise definition of the contracts related to the called operations is unnecessary. The called
procedures can be seen as grey boxes where only the knowledge of their input/output operands has
to be considered.

First tooling results

A prototype of a translator from B0 language into ACSL was issued by CEA during the AMASS project
as proof of concept of the verification method. That prototype does not handle all B0 notations
contained in the representative example supplied by ClearSy. It needs be completed to handle loop
statements and array data type.

A formal proof of the correctness of the method has been issued in Coq (https://coq.inria.fr) from the
AQUAS project.

The translation rules have been defined. Particular cases leading to one or more alternatives in the
translation have been identified. These alternatives have been evaluated in terms of proof automation
result in order to implement the more efficient one into the next version of the prototype. To perform
the conformity verification of loop statements in an automatic manner, dedicated lemmas have to be
provided by the translator. These lemmas have been identified in accordance within the chosen
external prover. The next version of the prototype will be improved in order to cover the translation
of loop statements and the use of array data type in B0 notations.

CEA set up an evaluation environment including the first translator prototype, Frama-C with its WP
plug-in and the external prover Alt-Ergo (URL: https://alt-ergo.lri.fr/). The environment has been
delivered to ClearSy. The evaluation of Frama-C results, in terms of proof success, identified several
issues. These issues come from the nature of the generated ACSL specifications to prove, which are
quite different to the ones written by hand.

The next version of the prototype will be improved in order to cover the translation of loop statements
and the use of array data type in B0 notations. Some issues in the WP plug-in of Frama-C have been
fixed into the development version since the evaluation environment was delivered to ClearSy. The
next delivery, planned for the end of June, will include new versions of both the B0 to ACSL translator
and Frama-C with the WP plug-in.

4.10.3 Results
From an extract of the B formal initializer in Table 4-8, we get the corresponding C code in Table 4-9
with the B to C translator of the project.

 INITIALISATION
 vid := 0 ;
 c1mcr := 0 ;
 c1mr1 := (0 .. c_sizeof_msg_minus1) * { 0 } ;

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 89

 c1mr2 := (0 .. c_sizeof_msg_minus1) * { 0 }
Table 4-8: formal B source algorithm

/* Array and record constants */
/* Clause CONCRETE_VARIABLES */
uint32_t donnees__vid;
uint32_t donnees__c1mcr;
uint8_t donnees__c1mr1[cst_projet__c_sizeof_msg_minus1+1];
uint8_t donnees__c1mr2[cst_projet__c_sizeof_msg_minus1+1];

/* Clause INITIALISATION */
void donnees__INITIALISATION(void) {
 unsigned int i = 0;
 donnees__vid = 0;
 donnees__c1mcr = 0;
 for(i = 0; i <= cst_projet__c_sizeof_msg_minus1;i++) {
 donnees__c1mr1[i] = 0;
 }
 for(i = 0; i <= cst_projet__c_sizeof_msg_minus1;i++) {
 donnees__c1mr2[i] = 0;
 }
}

Table 4-9: C translation

On the other hand, Table 4-10 shows the translation of the same B formal initializer to ACSL.

axiomatic donnees_i__predicates{
 predicate B0_donnees__INITIALISATION(uint32_t donnees__c1mcr__1,
 uint8_t donnees__c1mr1__1[B0sizeof1_donnees__c1mr1],
 uint8_t donnees__c1mr2__1[B0sizeof1_donnees__c1mr2],
 uint32_t donnees__vid__1) =
donnees__vid__1==0 &&
donnees__c1mcr__1==0 &&
\forall integer B0i0;
 (0<=B0i0<=B0_cst_projet__c_sizeof_msg_minus1)==>donnees__c1mr1__1[B0i0]==0) &&
\forall integer B0i0;
 (0<=B0i0<=B0_cst_projet__c_sizeof_msg_minus1)==> donnees__c1mr2__1[B0i0]==0);

module donnees_i:
function donnees__INITIALISATION:
contract:
 assigns donnees__c1mcr,donnees__c1mr1[..],donnees__c1mr2[..],donnees__vid;
 ensures B0implem: B0_donnees__INITIALISATION(donnees__c1mcr,
 (uint8_t [B0sizeof1_donnees__c1mr1])donnees__c1mr1,
 (uint8_t [B0sizeof1_donnees__c1mr2])donnees__c1mr2,
 donnees__vid);

at loop 1:
 loop assigns i, donnees__c1mr1[0..B0_cst_projet__c_sizeof_msg_minus1];
 loop invariant idx1: 0 <= i <= B0_cst_projet__c_sizeof_msg_minus1+1;
 loop invariant init1: \forall integer k; 0 <= k < i ==> donnees__c1mr1[k]==0;

at loop 2:
 loop assigns i, donnees__c1mr2[0..B0_cst_projet__c_sizeof_msg_minus1];
 loop invariant idx2: 0 <= i <= B0_cst_projet__c_sizeof_msg_minus1+1;
 loop invariant init2: \forall integer k; 0 <= k < i ==> donnees__c1mr2[k]==0;

Table 4-10: ACSL translation

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 90

Finally, the resulting C code is verified with regards to the ACSL specification with Frama-C, which leads
to the translation validation result in Table 4-11.

Table 4-11: Validation report

Module Function Total Valid Failed Success
crc_main - 24 24 - 100
crc_i7 crc__Get_CRC - - - -
crc_i INITIALISATION - - - -
util_i util__get_add_uint32 2 2 - 100
util_i util__INITIALISATION 2 2 - 100
verif_main - 29 29 - 100
itf8 itf__get_ccrc1 2 - 2 -
itf itf__get_ccrc2 2 - 2 -
verif_cpt_i verif_cpt__dectc 2 2 - 100
verif_cpt_i verif_cpt__dectr 2 2 - 100
verif_cpt_i verif_cpt__initc 2 2 - 100
verif_cpt_i verif_cpt__INITIALISATION 2 2 - 100
verif_cpt_i verif_cpt__initr 2 2 - 100
verif_cpt_i verif_cpt__testtc 2 2 - 100
verif_cpt_i verif_cpt__testtr 2 2 - 100
verif_i verif__INITIALISATION 2 2 - 100
verif_i verif__process9 2 1 1 50
donnees_i donnees__get_c1du 2 2 - 100
donnees_i donnees__get_c1mr1 2 2 - 100
donnees_i donnees__get_c1mr2 2 2 - 100
donnees_i donnees__get_c1r2du 2 2 - 100
donnees_i donnees__INITIALISATION 8 8 - 100

4.10.4 Lessons Learned
The tool proved to be very efficient, though more work is needed in order to address more B
constructs, and ultimately to cover the full language. Of particular interest for the following are loops:

7 Translation of CRC implementation is not fully supported by the B0 to ACSL prototype (support for
translation and proof of B0 loop statement is required).
8 The ITF machine is not fully refined. Since there is no B0 specifications for it, the conformity of its
operations cannot be validated with the proposed method.
9 The PROCESS operation of the B0 implementation of the module VERIF is not fully automatic. The
missing proof can be done using the interactive prover TIP of WP plug-in of Frama-C. In order to reduce
necessary effort for performing that proof, improvements in the translator replacing some existential
quantifiers by let-in constructs.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 91

deductive verification requires the correct invariant to be computed, which might be tedious to
automatize from the few examples we manually studied. Overall it was important to be able to verify,
with the tool, that the implementation is conform to requirements derived from SSP tradeoff analysis,
and that the tradeoffs were feasible from an implementation point of view. Feasibility feedback given
by static code analysis can be used as an additional input in the iterative SSP requirements analysis.

4.11 Safety and Performance Analysis in Multiprocessor Task Scheduling (Space
Use Case Example)

Contributor: ITI

The aim of the proposed method is to produce combined performance and safety metrics at the level
of code generation and its assignment to processing cores in a multi-core system. The approach is
illustrated by application to the Architecture Design Phase of the space multi-core use case (UC5). This
example also illustrates the inter-operation of three different analysis tools and some newly-
developed protocols which support the communications between the tools.

The method involves the inter-operation of three separate tools: A2K (ITI) is used to perform timing
analysis computations and act as a manager for the other two tools; TimingProfiler (AbsInt) is used to
calculate the Worst-Case-Execution-Times (WCET) of code modules; ANaConDA (BUT) is employed to
measure dynamic safety metrics of the generated code.

The space use case (UC5) involves code running on a multi-core processor system. Timing and code
safety analysis is essential to prove the code can be safely scheduled and run under all operating
circumstances.

4.11.1 Aim
The main goal of this work is to produce performance and safety metrics for multi-threaded code
running on multiple processing elements. These code segments are interruptible according to a
specified scheduling protocol and they may intercommunicate with each other via a variety of
mechanisms such as, for example, shared memory, communications ports, buses, etc. This is a general
view of the specific scenario presented in the space use case.

The performance metrics which we desire are the response times and data throughput of the system’s
flows (defined below), while the safety metrics we require are (a) whether all the computational tasks
meet their defined deadlines, and (2) measures of code-safety in terms of operations like access to
shared memory areas and determination of possible data-races in multi-threaded code.

A secondary aim of this work is to investigate and develop communications protocols to enable inter-
operation between the three analysis tools. Our goal is to provide the system architect with a tool suite
which facilitates rapid interaction and analyses of different system designs, a process sometimes called
“Design Space Exploration”.

4.11.2 Method
The abstract computational model which we employ is based on a set of flows. A flow is defined as a
collection of activities (or tasks) which are to be executed in some predefined sequence. Each flow has
a specific activation pattern which defines the times that the flow’s computations are started. The
activities of each flow can be executed on different processing elements and have a predefined
execution order. The activities might have access to shared resources such as memory, buses, or

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 92

peripherals. The various computational flows have defined priorities and their activities are scheduled
according to the scheduling algorithm of the underlying operating systems.

The combined analysis employs 3 interconnected tools developed by different AQUAS partners.

A2K (ITI)

A2K provides editors to define the system architecture in terms of the hardware devices and their
interconnections and also the software architecture in terms of code modules which are stored in a
Git repository. A2K also defines a deployment model which is effectively a mapping of the code
modules to processing elements along with definitions of the scheduling algorithm, the flow priorities,
and execution orders of each flow’s activities. A2K performs timing and scheduling analysis of the
overall system. To do this, it requires the WCETs of the code segments. These are computed by the
TimingProfiler tool described next. Finally, A2K manages communication with the TimingProfiler and
ANaConDA analysis tools, and it also prepares analysis reports.

TimingProfiler (AbsInt)

This tool computes the worst case execution times of each code module stored in a GIT repository. We
have developed a connection between A2K and TimingProfiler using the GraphQL protocol and a
virtual machine (Docker) running the TimingProfiler. In this way, the A2K user can quickly obtain the
execution times of code modules for analysis. If the code in the repository or the system’s architecture
is changed, then it is easy to re-run the timing analysis to obtain new reports.

ANaConDA (BUT)

ANaConDA is a framework that simplifies the creation of dynamic analysers for analysing multi-
threaded C/C++ programs on the binary level. The framework provides a monitoring layer offering
notification about important events, such as thread synchronisation or memory accesses, so that
developers of dynamic analysers can focus solely on writing code. In addition, the framework also
supports noise injection techniques to increase the number of inter-leavings witnessed in testing runs
and hence to increase chances to find concurrency-related errors.

A connection between A2K and ANAConDA is currently under development. This is based on the Open
Services for Lifecycle Collaboration (OSLC) protocol. Our goal here is to use the REST services provided
by OSLC to send the code segments from a Git repository, perform the safety analysis, and return the
results to A2K for assessment and reporting.

4.11.3 Results
At the present time, the algorithms for timing analysis in A2K and communication with TimingProfiler
are complete and working. An example of the output of timing analysis is shown in Table 4-12. The
important information to glean from this table is the computed response time of each task and
whether this figure is smaller than the task’s deadline. Results on the analysis of code safety using
ANaConDA will be presented in due course when the OSLC interface is complete.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 93

Table 4-12: Bin packaging thread allocation results

4.11.4 Lessons Learned
We are developing a flexible and highly interactive tool suite for performance and safety analysis of
multicore code segments. The tool enables the design engineer to quickly and easily try out different
system architecture designs and to evaluate their timing performance and code safety aspects. We are
now applying this process to the code associated with the space use case. This, however, has required
a certain amount of “reverse engineering” as, given the use case source code, we need to derive a
suitable computational model in terms of flows and activities.

The verification of the timing analysis is somewhat problematic - the calculations are complex and rely
on several assumptions. We need to determine if the computed response times are accurate. To do
this we have built a monitoring system which downloads code to real hardware and physically
measures the task response times. These are then compared to the results obtained from our analysis
thus verifying the calculations or not. Preliminary experiments are encouraging and indicate that our
timing analysis is correct.

4.12 Efficient Formal Verification of System Software Using Ada 2012 and SPARK
2014 (Space Use Case Example)

Contributor: HSRM

HSRM's methodology aims to reduce the time and effort it takes to develop formally verified system
software. In this example, the goal is to evaluate the said methodology and to cover the interaction
between safety and security in an effort-efficient way (i.e. containing the development cost of applying
formal methods). It is expected to achieve improvements in all three dimensions: safety and security
will be improved due to the application of formal methods and the provision of formal correctness
proofs, while development performance is expected to be improved (in comparison to other processes
featuring formal verification) due to SPARK’s ability to specify contracts as part of the source code. As
for computational performance, a certain decrease is to be expected. The evaluation was done by

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 94

delegating a subset of the work to a student who was unfamiliar with the methodology and
benchmarking his effort and his achievements.

4.12.1 Aim in the Use Case
Ada 2012 is a programming language which was designed, and is commonly used, in the development
of safety-critical systems. SPARK 2014 is a toolset and methodology based on a subset of Ada 2012
with extensions to enable the semi-automated definition and verification of formal correctness proofs.

A development process using Ada 2012 and SPARK 2014 was applied to the development of a critical
component of a microkernel in the Space Multicore use case (Use Case 5). As the development process
implies a defined methodology, the decision to apply it needs to be taken in the concept phase. The
trade-off between increased safety, security and efficiency of development on one side and a potential
loss of computational performance on the other needs to be taken into account in this early phase.
This work is expected to yield criteria to facilitate such decisions.

We recall that UC5 concerns the development of software for space missions leveraging multicore
processor architectures [Deliverable 2.2]. Space software applications rely on system services to be
provided by an operating system kernel, which, for this use case, needs to support multicore
scheduling. Such a kernel is the most critical component of any space-borne computer system;
therefore, it should be proven to be correct by design.

The ultimate goal of our effort in UC5 is to apply our methodology to the design of a microkernel
suitable for running space mission software. We aim to obtain formal proofs of correctness during the
design phase. For this particular analysis, a central component which deals with the dynamic allocation
of tasks to cores has been chosen: the scheduler. In order to demonstrate general effectiveness of the
approach, this scheduler is implemented and formally proven.

4.12.2 Method
HSRM's methodology uses a hierarchical approach to achieve formal verification more efficiently. A microkernel is being

developed using the proposed methodology as an experimental platform to exercise the approach, the microkernel under
development has a layered architecture where each layer is broken down into separate modules (see

Figure 4-32). Each module can be proven separately and can be used by higher layers. Additionally, if
a module cannot be entirely or partially proven, it has to be tested intensively. A prototype of the
microkernel was written in C, but the technology used for formal verification and implementation is
SPARK 2014. SPARK is a subset of the programming language Ada which enforces necessary restrictions
to make formal verification possible. Additionally, SPARK allows the definition of a formal specification
in the form of contracts (verification conditions). Using the SPARK 2014 tools, a formal proof can be
conducted to show whether the source code fulfils the contracts.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 95

Figure 4-32: Hierarchical approach

4.12.3 Results
To benchmark this method, a student rewrote the scheduler module in SPARK and was able to verify
216 out of 224 verification conditions. The effort was limited to 450 hours. During his work, the student
categorised and noted his effort as follows:

• LUE:

◦ Literature study & Initial
training

• PRT:

◦ Implementation & Project
Coordination

• AUP:

◦ Documentation &
Presentation

• VNPM:

◦ Project Management

The category “Implementation & Project Coordination” is further split into the following subcategories:

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 96

• MIG:

◦ Porting C code to SPARK

• VER:

◦ Writing and proving verification
conditions

• KOO:

◦ Project Coordination

• SIM:

◦ Writing a simulator to test the scheduler
Figure 4-33: Distribution of efforts within implementation and project coordination

Further, the implementation and verification efforts were analysed based on the lines of code of the
respective action and compared with the implementation and verification efforts of the seL4 [6]
microkernel:

HSRM Efforts

C Code cloc Code Lines Assertions Verification per loc

sched.c 252 193 59

sched.h 22 21 1

test_sched.c 90 0 46

C Total 364 214 106 0.50

SPARK Code cloc Code Lines Verification Conditions Verification per loc

sched.ads 317 273 44

sched.adb 201 23 178

sched_verification.ads 108 0 108

SPARK Total 626 296 330 1.11

 Implementation Verification

Overall Effort 62.25 h 95.25 h

Effort per loc of scheduler ~ 4.7 min ~ 19.31 min

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 97

The C code was a good starting point since it already had many assertions which were the basis for
many verification conditions. The C code had 0.5 assertions per loc and the SPARK code 1.11
verification conditions per loc. Based on the documented efforts it took the student on average 4.7
minutes to implement a line of code and about 17.3 minutes to verify a line of code.

seL4 Efforts

 Haskell / C loc Isabelle loc Invariants Proof loc

Abstract spec. - 4,900 ~ 75 110,000

Executable spec. 5,700 13,000 ~ 80 55,000

C implementation 8,700 15,000 0

For the seL4 microkernel, a different approach was used for the implementation and verification of
the kernel. An Abstract spec was implemented and verified in Isabelle/HOL and is the basis of the
verification. Further an executable spec was written in Haskell and verified in Isabelle/HOL and lastly,
the Haskell code was transformed into C code. The following efforts can be found in [Klein] and were
converted into min/loc.

• Abstract spec. ~ 4 person months (460 PH)

• Haskell prototype ~ 2 person years (3,520 PH)

• Executable spec. ~ 3 person months (480 PH)

=> Verification ~ 29 person months (4,640 PH) ~ 32 min/loc

• C implementation ~ 2 person months (320 PH) ~ 2.43 min/loc

4.12.4 Lessons Learned
The results with respect to the expected increase in development performance were satisfactory,
especially since the student was unfamiliar with the methodology, SPARK 2014 and formal
verification in general. This is also seen in the large amount of effort the initial training took. The
student attempted to learn Ada first before looking at SPARK. According to his own assessment, this
was unnecessary and only learning the SPARK 2014 subset would have been sufficient for this task. It
has been shown that the critical microkernel component which was the subject of this study correctly
implements its specification. Whether this increased assurance implies better safety or security of
the code depends on the correctness of the specification. To this end, the SPARK based development
process can be helpful by providing hints in cases of inconsistencies at the specification level, as
these typically make verification harder, if not impossible. Therefore, in future work, the actual steps
taken to transform a program to make it more suitable for verification will examined more closely.

4.12.5 Further Developments
The method will be used to implement the remaining modules of the C prototype and the
implementation and verification efforts will be benchmarked. Furthermore, the microkernel’s
throughput as well as real-time capabilities will be evaluated to determine the effect of the
development process on computational performance.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 98

Furthermore, a comparison between verification and testing efforts will be conducted. This will require
the development of test cases for verified components, while benchmarking the process.

4.13 Combined Model-Based Testing for Multiple Concerns (ATM Use Case
Example)

Contributor: AIT

Combined Model-Based Testing for Multiple Concerns brings together functional, safety, security and
performance aspects in verification.

The method is applied to UC1 Air Traffic Management, which provides an infrastructure for unmanned
aerial vehicles (UAVs) to collect and share position data of UAVs and normal air traffic, with the
purpose to avoid accidents and maintain no-fly zones. The use case comprises a client part in the UAVs
and a ground based server part.

At this time, only the concept is presented, application to UC1 has just started. While the combined
testing approaches share artefacts and tooling, they can in part be applied independently and it is not
yet clear which parts will be fully applied within the project to the selected use case.

4.13.1 Aim
The combined testing approach uses analysis outcomes for verification and validation and takes
advantage of synergies between approaches to verify the different quality attributes. This in particular
includes reuse of results of modelling efforts spent earlier in the project as much as possible.

The combined method itself is in principle applicable on system level down to software unit level.
Where it is applied depends on:

a. the amount of modelling effort that can be spent and the modelling detail achieved
b. if the requirements and target properties out of the analysis steps are sufficiently detailed and

applicable to that level (unit, component, sub-system or system)

The techniques combined in the method to address the different concerns are:

- Functional testing
- Robustness/Security testing
- Invariants (= “safety”) checking of the behaviour model
- Invariants (= “safety”) monitoring of the implementation
- Performance monitoring of the implementation
- Performance testing according to expectable loads
- Stress Testing
- Implementation performance predictions
- Implementation performance prediction validation

Within the ATM use case, a main goal will be evaluating the performance behaviour under expectable
loads and if there are emerging effects on the system for a high number of participating UAVs.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 99

4.13.2 Method
Figure 4-34 shows an overview of the different techniques comprising the method, their respective
steps and how they play together. The descriptions below refer to the different artefacts and process
steps of the diagram in Cursive letters.

Figure 4-34: Method overview – combined model-based testing for multiple concerns

4.13.2.1 Functional testing
In step F1. Model Behaviour, a Behaviour Model is built, formalizing the Functional Requirements - in
our case into UML state machine diagrams. From this model, functional tests can be generated (step
F2.). As generation strategy, either random walks or a coverage driven approach can be used. As
coverage metric, the used tool offers model mutation coverage, which allows one to emulate several
other coverage metrics, if needed. [Mutation-TCG] gives details on the mutation driven test case
generation and how it is implemented.

The generated tests are sequences of stimuli (controllable events, things the tester can influence) and
reactions (observable events, things the tester can observe and verify). Both types of events need to
be part of the test interface expressed in the model.

The Test Harness (step F3.) takes those sequences, applies the stimuli to the system under test and
compares the systems reactions to the expected/allowed events in the test. Usually, the Test Harness
also needs to translate between the abstract events in the model and the concrete events the System
Under Test.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 100

4.13.2.2 Robustness/Security testing
The Behaviour Model used for functional testing can also be used to Generate Negative Tests (step
SC1.). This is done using Smart Fuzzing, where a protocol or behaviour model is explored, and
unexpected inputs are randomly added to the allowed stimuli.

The tests are generated in a way, that these inputs are expected to be silently ignored and do not affect
the observable behaviour of the system. In an alternative mode, after each unexpected input, an
anonymous error handling response is inserted into the test. The Test Harness then needs to check if
system responses after an unexpected input fall into a defined set of error handling responses and are
not any unwanted behaviour.

This second mode can help to keep standardized handling of erroneous inputs out of the model, but
more complex fault handling, that for example rolls back the inner system state to stay safe, needs to
be modelled explicitly, if it shall be tested.

Since the tests continue after the unexpected input with positive tests, problems like dead locks should
be implicitly recognized by the test harness, without implementing additional test oracles. In case
there are unwanted conditions that could be provoked by fuzzing, but are neither affecting the
expected responses nor the Safety Assertions, nor the Performance Assertions (both see further
below), this would need an additional explicit test oracle to be implemented in the Test Harness.

4.13.2.3 Invariants/Safety checking of the behaviour model
In case there are given Safety Requirements or other conditions that need to hold during the operation
of the system, possibly also some contracts giving pre- and post-conditions for the behaviour, they are
formalized into Safety Assertions in step SF1. Formalize Safety Requirements. The conditions can be
expressions over the test interface events only or they can also contain internal variables.

During test case generation, these assertions can be checked by the test case generator in step SF2.
Observe Safety Assertions. This is much weaker than full classical model checking. The test case
generator tries to avoid exploring the full state space for performance reasons and hence can give no
guarantees. In case a breadth-first-search strategy is used by the test case generator, the given
guarantees are similar to bounded model checking. If a model checker for the formalism of the model
is available and its use is feasible for the size of the model, this shall be preferably used.

4.13.2.4 Invariants/Safety monitoring of the implementation
Given that either the Safety Assertions are only expressions over the events in the test interface, or
the used internal state variables of the System Under Test can be observed in the Test Harness, step
SF3 Monitor Safety Assertions can become part of the Test Harness. It can check that the modelled
Safety Requirements hold during all tests – functional (random and coverage driven), robustness, and
performance driven.

4.13.2.5 Performance monitoring of the implementation
Based on a performance instrumentation of the test harness (P1. Performance Logging) and
Performance Requirements that lead in step P2. Formalize Performance Requirements to Performance
Assertions, these Performance Requirements can be monitored during testing as part of the Test
Harness in P3. Monitor Performance Assertions.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 101

The Performance Requirements can be either upper or lower thresholds for parameters that can be
measured on the System Under Test (memory, processor load, bandwidths use, heat dissipation, …) or
response times for certain actions in the system.

This monitoring can be active during all types of tests – functional tests, robustness tests and dedicated
performance tests (see below).

4.13.2.6 Performance testing according to expectable loads
If in step P4. Build Usage Profiles, Usage Profiles can be derived from the Performance Requirements,
they can be used in step P5. Generate Performance Tests to provide tests that mimic the expectable
load of the system. This is done by steering random walks (see 4.13.2.1 Functional testing) with the
probability distributions given for the input events and possibly their parameter values.

The actually achieved performance is checked in P3. Monitor Performance Assertions.

4.13.2.7 Stress Testing
The Performance Logs recorded during testing or normal system operation can be condensed into Cost
Profiles in P6. Cost Profile Learning. This uses forms of regression learning and relates the
“performance cost” to the behaviour model.

In step P7. Generate Performance Tests, using the Cost Profile, Performance Tests can be generated
that try to put stress on the system for each type of performance measurement, individually or
combined.

Of course, while running such stress tests, not only the Performance Assertions can be monitored, but
also behaviour that changes or Safety Assertions that do not hold under stress can be identified.

4.13.2.8 Implementation performance predictions
With the Cost Profile, the Usage Profile and the Behaviour Model available, in step P8., Predictions of
Performance can be made using methods like Statistical Model Checking. The result is a probability
distribution of a certain performance hypothesis to hold. The chosen hypothesis is usually related to
the Performance Assertions.

4.13.2.9 Implementation performance prediction validation
Since the Cost Profile is only based on a sample of the behaviour and could be wrong, the performance
predictions need to be validated on the System Under Test. Using hypothesis testing, the number of
tests that need to be run on the System Under Test to demonstrate that the hypothesis holds, can be
kept substantially smaller than the number of simulation runs done in the model. Step P9. Generate
Performance Tests produces such a small test suite.

4.13.3 Results
As the approach builds on models, and behaviour modelling for UC1 is still ongoing, no results can be
presented yet.

The current UC1 model contains several interacting state machines, modelling behaviour of several
interacting actors in the system. As of now, as can be seen in Figure 4-35, the model expresses
movement between various states but does not contain effects that would be observable on the
outside, which is needed to decide if an implementation of this shows the same behaviour.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 102

Figure 4-35: Example state machine from UC1

4.13.4 Lessons Learned
While the approach aims at keeping additional efforts for modelling low, the model built without
having testing in mind was - not a completely unexpected surprise – not directly usable. The focus on
understanding a concept allows one to leave out details that would be needed for an “almost-
executable” model, which again builds the basis for the described method. Experience from other
projects shows that adding a notion of a test interface and a clear definition of borders of the system
under test are not only indispensable for any form of test case generation, but implicitly contribute to
better testability of the architecture and design. We expect the same to happen when we start
formalizing performance criteria.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 103

4.13.5 Further Developments
Only part of the sketched method is already implemented and available in tools that play well together.
The plan for AQUAS is to finish adding the described performance testing features (4.13.2.5-4.13.2.9
inspired by [SMC-response-times]) to the test case generator MoMuT, which already included random
and coverage driven functional testing and fuzzing as features. To apply the method to the
demonstrator, there is additional work to be done on the tooling, regarding a changed definition of
the test interface in the model and completing the feature to check safety properties during test case
generation. For application in the demonstrator, also several things need to be added to the Test
Harness, in particular to measure and collect performance data.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 104

5 Interaction Point Planning in the Use Cases
This chapter contains an update on the planning of the IPs that will occur during the part of each use
case development that is included in the AQUAS project. The description format introduced in D3.1
has been retained as suitable for these descriptions; but the plans have been revised in view of
experience with the combined analyses and updated estimates of effort required.

5.1 IP Plan for the The ATM Use Case (UC1)
As reported in deliverable D2.3.1, the PLC of ATM use case is based on the V-model (see Figure 5-1)
that mainly represents the current baseline for Integrasys that is/has been used to develop
applications internally (without AQUAS Co-Engineering methodology). Figure 5-1 shows the allocation
of each partner involved in the use case within this PLC.

Figure 5-1: PLC for Use Case 1, with interaction points

This model allows us to have a rigorous development lifecycle where we can identify the next
interaction points during the process that currently is carried out:

• SSR (Software Specification Review). The SSR is a technical assessment establishing the
software requirements baseline of the system in order to ensure the preliminary design.

• PDR (Preliminary Design Review). The PDR is a technical assessment establishing the physically
allocated baseline to ensure that the system has a reasonable expectation of being judged
operationally effective and suitable.

• CDR (Critical Design Review). The CDR is a technical assessment establishing the build baseline
to ensure that the system has a reasonable expectation of being judged operationally effective
and suitable.

• QR (Qualification Review). The QR is a technical assessment in order to ensure that the
integrated software is tested to provide evidence for compliance with the software
requirements.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 105

• AR (Acceptance Review). The AR is a technical assessment in order to verify the completeness
of the specific end products in relation to their expected maturity level and assesses
compliance to stakeholder expectations.

Furthermore, in the lifecycle we can differentiate the following time phases:

• Phase 1: definition of the idea and concept, project context, user needs and high level
requirements (finishes with SRR assessment).

• Phase 2: preliminary (high level) design with main trade-offs identified and resolved, mapping
of high level requirements in low-level requirements and selection of preliminary technologies
and platforms (finishes with PDR assessment).

• Phase 3: final (low level) design, including possible changes in the design (e.g. using simulation
tools or prototyped) and confirmation of technologies and platforms (finishes with CDR
assessment).

• Phase 4: implementation and integration (finishes with QR assessment on pre-production). It
includes implementation and testing according to the implementation in a pre-production
environment. This stage can be divided into two sub-stages:

o Implementation and unitary testing (4a).

o Integration and testing at system level (4b).

• Phase 5: this stage covers the validation and deployment in production environment (finish
with the AR assessment).

• Phase 6: maintenance.

The next table shows the interaction points defined for this use case taking into account that we are located on the phase 4 (implementation) and that another
combined analysis could be included in this interaction points in order to solve potential security/safety/performance conflicts that could come out in next phases:

Table 5-1: Interaction Points of ATM use case.

Interaction
Point

Identifier

Interaction Point
Informal Description Combined Analysis Who

On the basis of
which

information
(artefacts)

Attributes
studied

Producing what kind of results
(outputs) Gaps Comments

Interaction
Point 1
(IAP_01)

Type: Discussions.
PLC Placement: High Level
Design.
Purpose: high-level
requirements consolidation
first set of low-level
requirements generated
including identification of SSP
controls and PDR approval.
Activities: Modelling and
analysing possible
interferences and conflict
points.

Cross-check of
system-targets and
low-level
requirements using
tools data and
involving expert staff
discussions.

Integrasys ,
Intecs, Trusport

System high level
targets
CON-OPS and
preliminary
architecture
Environment
characterization &
restrictions
Preferred
technologies
High level CHESS
model, SSDLC and
Medini (TBC).

Sa/Se/P

A consensuated set of low-level
requirements, a first functional
implementation design and
identification of specific
safety/performance/security controls
needed.

Re-write some of the targets if
needed.

Safety objectives
pursuing absence
of i) software
safety violations
(reaching forbidden
states), ii)
deadlocks (where
the program seems
to stop running and
stops responding to
events) and iii) live-
locks (where the
program cycles
endlessly but can’t
make progress).

Interaction
Point 2
(IAP_02)

Type: Simulations, Prototyping
and Discussions.
PLC Placement: Low Level
Design
Purpose: Final low level
requirements established for
the client-side including SSP
controls and CDR aproval
Activities: Modelling and
analysing possible
interferences and conflict
points.

a) Client-side
reliability,
schedulability and
deployment
(Safety/Security/Perf
ormance)
b) DDS client-side
security
configuration
(Security/Performanc
e).
c) Mobile network
selection strategy
(Security/Performanc
e).

Integrasys
(a,b,c)
Intecs, UNIVAQ,
HSRM, BUT (a)
Trustport , City
(b)

Preliminary (Non-)
Functional low level
requirements
including SSP
controls.
a) Low-level CHESS
model,
HEPSYCODE/
ANACONDA results.
b) SAN, sDDS & SW
prototyping.
c) SW prototyping.

Sa/Se/P

A consensuated low level design of
the UC1 client-side (including platform
deployment) with agreed trade-offs of
performance, security and safety.
Re-write some of the requirements if
needed.

CHESS models to
be reused by AIT in
the verification
phase.

AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment
Techniques - Preliminary

Version 2.0

© AQUAS Consortium 107

Interaction
Point 3
(IAP_03)

Type: Simulations, Prototyping
and Discussions.
PLC Placement: Low Level
Design.
Purpose: Final low level
requirements established for
the server-side including SSP
controls and CDR approval.
Activities: Modelling and
analysing possible
interferences and conflict
points.

a) DDS server-side
analysis
(Safety/Security)
b) DDS server-side
analysis
(Performance/Securit
y)

City, Trustport,
BUT, Intecs
(TBC)

Preliminary (Non-)
Functional low level
requirements
including SSP
controls.

SAN model and
DDS
implementations
with traffic fuzzing.

Say/Se/P

A consensuated low level design of
the UC1 server-side with agreed
trade-offs of performance, security
and safety.

Re-write some of the requirements if
needed.

Intecs may provide
support for easier
and accelerated
SAN simulation.

Interaction
Point 4
(IAP_04)

Type: Implementation-based
assessment.
PLC Placement: Verification.
Purpose: Verify client-side
implementation under realistic
performance/safety/security
threats.
Activities: Testing, results
assessment, requirements
checking, pre-QR approval.

Component unit-level
verification
Overall software
schedulability &
dependability
(simulated DDS
server)
LTE specific tests.

Integrasys
(overall test
responsibility)
AIT, BUT, City
(TBC) providing
specific test
support.

Implementation
artefacts
Testing artefacts
(MoMuT,
ANACONDA and
SAN).

Sa/Se/P Test results traceable to established
low-level and high-level requirements.

During
implementation,
SYSGO/ABSINT
tooling will be used
but no formal IP is
defined at that
phase.
City may provide
support to test DDS
service under
attack.
A full QR approval
would need a full-
system testing
(client and server
side) which is out
of scope.

5.2 IP Plan for the Medical Devices Use Case (UC2)
The medical device use case is about developing a device for closed-loop control of patient blood
pressure and neuromuscular transmission by extending a monitor product, already in widespread use,
with control algorithms to directly control infusion pumps. The part of the PLC taking place during
AQUAS is the development of core functions. How this process differs from a stylised V-model PLC
was discussed in D3.1, section 4.6.2 (for details on the UC and demonstrator, see also D2.3.2).

By the end of AQUAS, the state of development is planned to be a prototype including full
implementation of blood pressure and NMT control, with a “hardware in the loop" (HiL) test setup ,
suitable for testing (now under way for the blood pressure control) to demonstrate that the product
is safe for lab testing with patients. In addition, it is expected that some of the improvements to human
interface (for safety) and security aspects identified in IP1, intended for the final version for clinical
use, will be implemented.

The planned IPs have thus evolved slightly, with no change to IP1, which concerns the stage of
requirements and concept design and is mostly completed; while IP2 is envisaged to specify the
verification activities for the complete product, meant to demonstrate achievement of all required
SSP properties. Although the complete verification itself will be completed after AQUAS, on the full
prototype for clinical use, parts of it are piloted in AQUAS, starting with the mentioned testing of the
control algorithm for robustness.

Table 5-2 : Interaction Points of Medical use case

Interactio
n Point

Identifier

Interaction Point
Informal

Description
Combined
Analysis Who

is expected to do
What When

On the basis of
which

information
(artefacts)

Attribute
s studied

Producing what
kind of results

(outputs)

Comments
and Known

Gaps
Relates
to Tools

Interaction
Point 1
(IP1)

Type: Risk analysis
from SSP
viewpoints and
refinement or
requirements/high
-level design
PLC Placement:
Requirements/
Conceptual Design
Phase
Purpose: early
validation of SSP
requirements
coming from
Requirements
stage, identify new
SSP requirements
(e.g. according to
the introduction of
mitigation
solutions), check
feasibility of
updated set of
requirements,
properly feed the
implementation
phase, give model-
based support to
be able to possibly
trigger a trade-off
meeting

Hazard and
operability (HAZOP)
analysis.
Identification of
hazards and their
likelihood/severity
to drive any needed
changes to
requirements,
inform decisions
regarding design,
and/or trigger
further
specialist/combined
analyses

Led by
City and
Involvin
g: RGB,
Trustpor
t, ITI,
CEA,
Tecnalia
,
All4Tec,
AMT

Activity:
HAZOP analysis
Method:
Systematically applying
a series of guidewords
to each step in a use
scenario to identify
potential deviations of
the system behaviour
from the design intent

In the
Requirements
/ Conceptual
Design Phase
after RGB has
provided a
preliminary
description of
the system
and its
requirements

Use scenarios,
requirements, and
system description
provided by RGB

Sa, Se, Pe

List of
hazards/feared
events and
potentially changes
to system
requirements/design
, and/or triggers of
further
specialist/combined
analyses

Trial of the
HAZOP
analysis was
limited to the
specific use
scenario(s)
chosen

Hazard analysis and
risk assessment
(HARA) and Threat
analysis and risk
assessment (TARA).
To identify threats
and attacks that
potentially lead to
hazards and perform
a risk assessment
based on the HAZOP
analysis and design
models, asset
identification is
performed and used
to automatically
derive threats and
potential attack
scenarios that are
later assessed

Led by
AMT but
involvin
g UC2
partners

Activity:
HARA and TARA
Method:
Partners' HAZOP
analysis on Process
view is imported into
medini analyze;
TOFCuff system design
modelled in medini via
SysML. This model is
used to identify assets
and their security
attributes to
automatically derive
potential threats by
applying STRIDE
categories. Threats are
assessed and
treatments defined.
From the HAZOP,
attacks can be derived
that are linked to
corresponding threats.

In the
Requirements
/ Conceptual
Design Phase
when RGB has
provided a
preliminary
design of the
system and its
requirements,
and after the
HAZOP
analysis

System
specification from
RGB and output of
the HAZOP
analysis
performed on a
process level

Sa, Se

A list of hazards, a
collection of threats
and attacks that are
related in a cause
and effect
relationship, a risk
assessment and
treatment on the
threat level

 Medini
analyze

Fault tree analysis All4Tec,
Intecs,

Activity:
Fault-tree analysis

In the
Requirements

Use scenarios,
requirements, and Sa, Se, Pe Critical paths that

can lead to patient Safety
Architect,

© AQUAS Consortium 110

and
Tecnalia

(FTA)
Method:
Creating fault tree
using feared events
identified in HAZOP.
the FT is analysed for
fault propagation,
critical paths, etc. and
further analysed using
Tecnalia's concept-
aware analysis tool to
identify triggers of co-
engineering meetings
and reports on
evolution

/ Conceptual
Design Phase
and after the
HAZOP
analysis

system description
provided by RGB
along with the
feared events
identified in the
HAZOP analysis

harm. To inform
mitigation solutions
which can change
system requirements
and design. Also
highlights important
test cases (useful for
IP2) and potential
conflicts to be
checked at later
stages.

Cyber
Architect,
CHESS,
and
Concept-
aware
analysis
tool

Authentication
trade-off analysis:
clarify trade-offs that
arise from a novel
security requirement
by describing the risk
associated with each
alternative design
solution, to support
rational choice of an
authentication
method

Trustpor
t, City
and RGB

Activity:
Trade-off analysis
Method:
authentication
methods are described
from different
viewpoints for pre-
selection; analysis then
extended via
dependency diagrams
and comparative
tables, and potentially
to quantitative analysis.

In the
Requirements
/ Conceptual
Design Phase -
triggered by
the HAZOP
analysis

Requirements and
system description
provided by RGB,
as well as
literature
describing
authentication
methods and their
effectiveness in
various contexts

Sa, Se, Pe

Description of the
risk associated with
each alternative
authentication
method from a
variety of viewpoints
(safety, security,
performance,
usability, cost, etc.)
so that designers can
make informed
decisions

Interaction
Point 2 (IP2)

Type: Detailed
specification of
testing and
verification
activities

PLC Placement:
Testing/Verificatio
n Phase

Purpose: To
produce a
verification plan

Static code analysis,
To verify the
absence of
undefined
behaviours which
lead to potential
safety risks and
security
vulnerabilities.

CEA

Activity:
Static code analysis
Method:
Static code analysis to
guarantee, through
formal proofs, that the
C source code complies
with the initial abstract
specifications

In the Testing/
Verification
Phase and
after the code
and
traceability
information is
provided by
RGB

C code, as well as
traceability
information
linking code items
and low-level code
properties to the
high-level system
requirements (all
provided by RGB)

Sa, Sec, Pe

Success/Failure
documenting
potential conflicts
arising from
implementation, and
thus also changes
decided to resolve
any conflicts.

Scope is
defined by
RGB,
identifying
target parts of
code.

Frama-C

Preliminary
verification to test
robustness of the BP
control algorithm,

RGB,
BUT, ITI

Activity:
System verification of
BP control algorithm
Method:

In the
Testing/Verific
ation Phase.

Medical
consultations by
BUT with partner
medical centre in

Sa

Success/Failures of
the control
algorithm, which
may trigger further

Initially limited
to control of
blood
pressure, as in

A2K
testing
platform,
patient

© AQUAS Consortium 111

that adequately
covers the SSP
requirements for
the new device

Note: a subset of
the verification
activities will be
within the AQUAS
timeframe

especially to
extremes in the
patient sensitivity
spectrum in
preparation for
clinical trial, and to
demonstrate the
functionality and use
of the testing
platform for future
testing phases

Monte Carlo generation
of different patient
characteristics to test
whether the control
algorithm achieves
given patient
parameter targets.
Noise/ perturbations
applied to test
robustness of the
algorithm.

Currently
underway

the Czech
Republic to inform
realistic and
clinically
meaningful
parameters of
patient sensitivity

developmental
improvements. Also,
expected outputs
include: the range of
patient parameters
for which the
algorithm is
expected to
successfully operate;
information
regarding the
functionality of the
testing platform for
future testing.

current
prototype and
patient model.
Testing
concepts later
applied to
testing
neuromuscula
r transmission
control.

model
defined in
C-code,
and test
hardware:
arm
simulator,
monitor,
infusion
pump
tree, and
BP control
algorithm
prototype

Definition of test
plans : define a set
of test cases that
address the various
viewpoints (SSP and
usability) and are
traceable to the
system requirements
in order to verify the
system.

RGB,
BUT,
City,
Trustpor
t,
All4Tec,
Tecnalia

Activity:
System verification of
the BP control
algorithm
Method:
Each specialist defines
test cases that address
their specific
viewpoint/specialty
(e.g.: City re human
factors exceptions,
Trustport re security
requirements, Tecnalia
re requirements from
medical standards,
All4Tec re critical paths
identified in the FTA in
IP1, etc.). A sufficient,
feasible test case plan
is assembled that
avoids duplications

In the Testing/
Verification
Phase

System
requirements
provided by RGB,
mitigation
solutions
introduced into
the system design,
and critical paths
identified in the
FTA in IP1

Sa, Sec, Pe

Sufficient, feasible
and efficient set of
test cases that is
traceable to the
system
requirements.

AQUAS testing
will only
address
capabilities of
existing
prototype. So,
parts of the
test cases
defined will be
for use in
verification
phases after
AQUAS on
complete
system.

OpenCert,
Concept-
aware
analysis
tool, A2K
testing
platform,
patient
model
defined in
C, test
hardware
(arm
simulator,
monitor,
infusion
pump
tree, and
BP control
algorithm
prototype
)

© AQUAS Consortium 112

Design of assurance
case

Tecnalia
co-
ordinati
ng all
partners
involved
in IP2

Activity:
Preparation of
assurance case
Method:
Define how outputs of
the various analyses
specified in IP2 serve
towards the assurance
case.

In the Testing/
Verification
Phase.
Preliminary to
executing the
various
testing/verific
ation activities
on completed
systems

Requirements as
refined by IP1,
preliminary specs
of various
verification/testin
g activities

Sa, Sec, Pe

Indications of
elements required in
the various
verification/testing
plans. Outline of
assurance case and
organization of the
evidence used to
support it.

Within the
timeframe of
AQUAS, the
assurance
case is
planned but
not
completed;
but
contributes to
establishing a
sound V&V
plan

OpenCert
and
Concept-
aware
analysis
tool

Further IPs most likely outside AQUAS timescale

5.3 IP Plan for the Industrial Drive Use Case (UC4)
The lifecycle applied is a standard V-cycle as shown in Figure 5-2

Figure 5-2: PLC for the Industrial Drive use case, with interaction points

The planned IPs are shown in Table 5-3.

Implementation

Test results

Validation

Development

Functional Safety
and Security

Concept

Technical Safety
and Security

Concept

System Design

Concept Phase

Integration
and Testing

Safety
Security

Performance

CA1

CA2

CA3

Table 5-3: Interaction Points of Industrial Drive use case.

Interaction
Point

Identifier

Combined
Analysis
Identifier

Interaction Point
Informal

Description

Who is expected to
do What

When On the basis
of which

information
(artefacts)

Attributes
studied

Background
Info

Producing what
kind of results

(outputs)

Relates
to Tools

Interaction
Point 1
(IP1)

Combined
Analysis 1
(CA1)

Type: Simulation-
based system
assessment
PLC Placement:
Concept Phase
Purpose: Validation
of current set of
Sa/Se/Pe
requirements against
the actual system
design.
Activities: Modeling
and simulation based
on the current system
description, followed
by validation of the
actual safety,
security, performance
requirements. Results
are recommendations
for
requirements/system
design for trade-off
decisions.

CITY Activity:
Modeling and
simulation of the
current system
design information
for validating the
current set of
requirements
Method:
Moebius SAN
modeling and
simulation

In the
Concept
Phase
when
the
interfer
ence
analysis
is
finished

D2.2.4
Demonstrator
Architecture,
SaR, SeR, PeR
from
interference
analysis

Sa, Se, Pe D2.1.4 Domain
Environment,
"System
Architecture -
Additional
Information.docx"
(Additional Inputs
for Partners in the
Concept Phase).

Recommendations
on
requirements/system
design (they are e.g.
based on the system
reliability results
from simulation with
Moebius) - this
information is used
for trade-off
decisions.
[table, prose]

Moebius
(Stochastic
Automata
Networks)

Interaction
Point 2
(IP2)

Combined
Analysis 2
(CA2)

Type: Simulation-
based system
assessment
PLC Placement:
Design Phase
Purpose:
Safety/Security
analysis
Activities: Modeling

CITY/
SAG

Activity:
The implications of
security on safety
are analyzed by
simulating attacks
on several attack
interfaces in the
design such as:
Forged messages

Design
Phase

D2.2.4
Demonstrator
Architecture,
D2.3.4, SaR, SeR,
PeR from
interference
analysis
(Concept Phase)

Sa, Se D2.1.4 Domain
Environment,
"System
Architecture -
Additional
Information.docx"
(Additional Inputs
for Partners in the

Recommendations
on the system design
on how safe and
secure the system is
based on the current
design decisions
taken
[tables, prose]

Moebius
(Stochastic
Automata
Networks)

© AQUAS Consortium 115

and simulation based
on the current system
description

on the Ethernet
between Motor
Control Platform
and Remote
Control Application
workstation
2. Forged messages
on the links
between Motor
Control Platform
and Motor Power
Board
Method:
Moebius SAN
modeling and
simulation

Concept Phase),
D2.2.4, D2.3.4

[system reliability,
availability, etc.]

 Combined
Analysis 3
(CA3)

Type: Simulation-
based system
assessment
PLC Placement:
Design Phase
Purpose:
Security/Performance
analysis
Activities: Modeling
and simulation based
on the current system
description

TP/MTTP Activity:
Security
recommendations
from TP's SSDLC are
taken into account
for modeling the
system in TTool
(MTTP). Different
security algorithms
for confidentiality
(AES) are tried out
and the
performance of the
system is checked.
Method:
Modeling and
simulation with
TTool/SSDLC

Design
Phase

D2.2.4
Demonstrator
Architecture,
D2.3.4, SaR, SeR,
PeR from
interference
analysis,
Interference
analysis
database from
Concept Phase

Se, Pe D2.1.4 Domain
Environment,
"System
Architecture -
Additional
Information.docx"
(Additional Inputs
for Partners in the
Concept Phase),
D2.2.4, D2.3.4

Recommendations
on the system design
on performance for
different security
measures.

TTool,
SSDLC

Interaction
Point 3
(IP3)

most
likely out
of scope

PLC Placement:

© AQUAS Consortium 116

for
AQUAS

Development
Phase

Interaction
Point 4
(IP4)

most
likely out
of scope
for
AQUAS

PLC Placement:
Integration and
Testing Phase

5.4 IP Plan for the Space Multicore Architectures Use Case (UC5)

The planned IPs for this use case are shown in Table 5-4.

Table 5-4 Interaction Points of Space use case.

Interaction
Point

Identifier

Combined
Analysis

Identifier
Interaction Point

Informal Description Who
is expected to do

What When
On the basis of which

information (artefacts)

Attribut
es

studied

Backg
round
Info

Producing what kind of
results (outputs)

Relates to
Tools

IP_Cph_1
(IP1)

Combined
Analysis 1
(CA1)

PLC Placement: Concept
Phase (selection of the
methodology has to be
done in the concept
phase)
Purpose:
Methodology to develop
safe and secure system
software by applying
formal methods.
Activities: Application of
formal methods to
development of System
Software (e.g. OS kernel)

HSRM

Activity:
Discuss about
- safety/security
integrity levels
achievable with or
without formal
methods
- impact of formal
methods use on
performance
- impact of formal
methods use on
development effort
- tradeoff between
application of
formal methods vs.
rigorous
testing/run-time
checking
Method:
Formal verification

After
Requirements
baseline and
before
architecture
baseline.

* Set of system software
functional requirements
(derived from use case
application functional
model)
* Set of system software
timing requirements
(derived from use case
application timing
model)
* Set of system software
security requirements
(based on ESA
requirements and/or
best practices in related
domains, e.g. avionics)

Sa, Se,
Pe

D2.1.5

ARTIFACT 1:
 name: report of affected
modules (input to system
architecture model)
 input to IP: IP_Dsph_1
ARTIFACT 2:
 name: verified source code
with verification conditions
and proofs.
 input to IP: IP_Dvph_1 /
IP_Dsph_1.
ARTIFACT 3:
 name: unverifiable source
code with appropriate test
cases
 input to IP: IP_Dvph_1 /
IP_Dsph_1.

(ESA) space
worthiness
certification
requirements
expert
Security
Engineer
expert
Safety
Engineer
expert
(SPARK)
Formal
Methods
expert
System
software
expert

IP_Dsph_1
(IP2)

Combined
Analysis 2
(CA2)

PLC Placement: Design
Phase
Purpose:identify
interferences due to
safety-security barriers in
the architecture.
Activities: Once CHESS
model has been
enhanced with safety-
security barriers, a co-
engineering meeting for
a combined safety-
security analysis is held.

INTECS
ALL4TEC
TECNALI
A

Activity:
to take decision for
the
implementation of
safety or security
barrier in the
architecture
Method:
Co-engineering
meeting

On every
design iteration
(after an
architecture
baseline)

*System "enhanced"
architecture (with safety-
security barriers)
* Set of security
requirements
* Set of safety
requirements
* Set of functional
requirements

Sa, Se D2.1.5

ARTIFACT 1:
 name:Added or changed
requirements
 affected IP:: IP_Cph_2
ARTIFACT 2:
 name: Safety/Security
trees
 input to possible IP in
validation phase

ARTIFACT 3:
 name: (HTML) formal
concept analysis
 input to IP:: TBD

System
architecture:
CHESS
Safety
analysis:
safety
engineer with
SafetyArchite
ct
Security
analysis:
security
engineer with
Cyber
Architect
Safety-
Security
combined
analysis:
Tecnalia
concept-

© AQUAS Consortium 119

aware tool
(prototype)

IP_DsDvph_1
(IP3)

Combined
Analysis 3
(CA3)

PLC Placement:Design
and implementation
phases.
Purpose:find timing
interference on multi-
core systems
Activities: Two-step
timing interference
characterization

TRT

Activity:Two-step
timing interference
characterization
(architecture &
application)

Method:
characterization
methodology

Iterate until
convergence on
safefy / security
/ performance
requirements
are met.

* Functional architecture
description
* Hardware architecture
description
* set of safety
requirements
* set of security
requirements
* set of performance
requirements

Sa, Se,
Pe

D2.1.5 TBD

All4TEC -
SafetyArchite
ct
MTTP - Ttool
TRT -
Time4Sys/Te
mpo

IP_DsDvph_2
(IP4)

Combined
Analysis 4
(CA4)

PLC Placement:Between
design and
implementation.
Purpose: Safe
Scheduling, Safe Code
generation and
performance analysis
Activities: Generation of
threaded code modules
and analysis of timing
and scheduling
performance/safety
aspects of the overall
system. Analysis of
generated code for
concurrency and memory
safety.

ITI
BUT
ABSINT

Activity:
Response time
analysis &
schedulability.
Analysis of code
safety and memory
usage including
shared resources.

Method: safe code
generation

System hardware
components description
(platform model)
High level description of
application software
(tasks, flows, precedence
relations)
Code modules for each
task.
Deployment model (task
priorities, activation
patterns, use of shared
resources,
software/hardware
allocation constraints)

Sa, Pe D2.1.5

ARTIFACT 1:
 name: threaded code
modules with enhanced
safety.
 input to IP: IP_Dvph_1
ARTIFACT 2:
 name: performance
reports (latencies,
throughputs)
 input to IP: IP_Dsph_1 (e.g
if WCET exceed design
constraints)
ARTIFACT 3:
 name: Sensitivity results –
How “close” system is to
becoming un-schedulable.
 input to IP: IP_Dsph_1

A2K –
Art2kitekt /
TimingProfiler
(provides
execution
times)
BUT
ANaConDA &
Perun (OSLC
Interface) for
static code
analysis.

IP_Dvph_1
(IP5)

could be in
the scope
for AQUAS

PLC Placement:
Implementation phase.
Purpose: New code
implementation analysis

IP_VVph_1
(IP6)

most likely
in scope for
AQUAS

PLC Placement:
Verification and
validation phases.
Purpose: Verification of
design expected results

IP_Cph_2
(IP7)

could be in
the scope
for AQUAS

PLC Placement: Concept
phase
Purpose: Requirements
Joint Review

6 Conclusions
This document is delivered at month 24 of the project. Its contents are the basis for the final stage of
the AQUAS methodology work. The AQUAS use cases have applied combined analyses on parts of their
demonstrator development processes; these examples, documented here, will help all project
partners in the final stage of work in the methodology work package. This final stage will involve:

• further application of combined analyses and new interaction points, so as to validate and
refine the AQUAS approach; and

• reporting of the results so as to deliver methodology proposals, which will be

o based on combined analyses and interaction points;

o supported by the tool developments performed in AQUAS;

o suitable for adoption by companies and for consideration by standard organisations.

Regarding the potential for broader adoption and standardisation, we note that the 2018 version of
standard ISO 26262 (Road vehicles — Functional safety), in Part 2 (Management of functional safety)
mandates that as part of "safety culture":

5.4.2.3 The organization shall institute and maintain effective communication channels
between functional safety, cybersecurity, and other disciplines that are related to the
achievement of functional safety.

EXAMPLE 1 Communication channels between functional safety and cybersecurity in order to
exchange relevant information (e.g. in the case it is identified that a cybersecurity issue might
violate a safety goal or a safety requirement, or in the case a cybersecurity requirement might
compete with a safety requirement)."

AQUAS directly addresses the need identified in this standard, but it also offers concrete solutions. An
organisation trying to satisfy the above "normative" statements in ISO 26262 will find in the
"informative" annex E of the standard only a basic list of some of the goals for such communication.
Instead, the present document describes a set of concrete approaches at the technical level, with
preliminary validation of their practical applicability and effectiveness. A single project like AQUAS
could never deliver complete assessment of a set of complex methods, which is only possible through
larger-scale use. But the reports in this document, and the further experience that will be accumulated
in the remaining part of AQUAS, will offer evidence for partners and other users to decide on adopting
or piloting both the individual AQUAS techniques and the AQUAS approach.

Chapter 4, which describes the techniques for "combined analyses", documents that the trials of these
techniques have been successful: no major obstacles have been encountered in applying them; some
lessons have been learned about how to apply them; these techniques have helped to detect
interdependencies between the SSP requirements and the design decisions driven by them, to trace
possible hazards and their causes, etc. The examples documented here are limited in scope, for the
sake of readability, but most of them are already being extended to address broader subsets of the
demonstrator systems.

Apart from the combined analyses, the present document has added detail to the Interaction Point
concept as developed so far. In particular:

• Chapter 2 gives a top-down view of the intended AQUAS improvements to the product life cycle
(PLC) and the role played by interaction points. This includes the Conceptual Model of the AQUAS
product life cycle, which will help interaction within the project, with a potential for possible
adoption in standardization.

© AQUAS Consortium 121

• The outline of tooling requirements for interaction points in Chapter 3 supports the work on WP4,
Design Tooling.

In the remaining time of the project, the AQUAS Use Cases will move on to the next interaction points
in their planning, and thus feed their experience back to improve these tooling requirements and
guidance about managing co-engineering via interaction points.

Last, work on this deliverable has contributed to the planning of both the individual partners' activities
and the joint use case activity that will support the methodology work in the remaining part of the
AQUAS project. These plans are summarized in the "Further Developments" subsections in Chapter 4
"Methods for Combined Analyses" and in Chapter 5 "Interaction Point Planning in the Use Cases". As
each use case proceeds through its PLC to subsequent interaction points, this will help AQUAS to
further assess not just the effectiveness of analysis techniques but also the way that interaction points
should be planned (their placements and the analyses they will include). The lessons learned will be
fed into the final reporting from WP3.

© AQUAS Consortium 122

7 Glossary and abbreviations
Table 7-1: AQUAS-specific terms and AQUAS-specific word uses

Combined
analysis

An analysis that combines different viewpoints, e.g. safety and security. Equivalent
to Interference analysis

Co-
engineering

AQUAS usage: Managing the interactions between system qualities (key ones in
AQUAS being safety, security, performance, but also usability). In particular,
orchestrating the manual and automatic trade-offs within and across stages of the
product lifecycle.

Focus area see "silo"

Interaction
Point

A step in a PLC consisting of running combined analyses from the viewpoints of two
or more properties (e.g. security, safety etc), through some mix of automated and
human analyses, holding discussions as needed to resolve problems arising, possibly
iterating analyses and reaching trade-off decisions. Also, the point in the PLC at
which one such activity happens

Interference
analysis

Any analysis that addresses more than one non-functional requirements. Also used
in UC4 for a preliminary analysis intended to

Silo (or
"focus area")

A set of specialist activities and specialists , e.g. a security team in a development
project, and their activities.

Note: In AQUAS, "silo" is used without the negative connotations it may have in
business literature (dysfunctional teams, unable to communicate effectively), and
does not assume complete lack of communication, but rather communication
organised through "interaction points. However, "focus area" has been introduced
for contexts where "silo" may be misinterpreted

Work
product

AQUAS usage: any item produced during the lifecycle; artefact that is part of a
system or used in its PLC, like design documentation or test plans.

Table 7-2: Abbreviations used in the text

ATM Air Traffic Management

CE Co-engineering

FMVEA Failure Modes, Vulnerabilities and Effect Analysis

FT, FTA Fault Tree, Fault Tree Analysis

HARA Hazard Analysis and Risk Assessment

HAZOP HAZard and OPerability analysis

HW Hardware

IP Interaction point

MITM Man In The Middle (attack)

PLC Product lifecycle

SAE Society of Automotive Engineers

SAN Stochastic Activity Network

SSP Safety, security and performance

SW Software

© AQUAS Consortium 123

TARA Threat Analysis and Risk Assessment

© AQUAS Consortium 124

References
[Arsenault] Arsenault, D., A. Sood, and Y. Huang. Secure, resilient computing clusters: Self-cleansing
intrusion tolerance with hardware enforced security (SCIT/HES). in 2nd International Conference on
Availability, Reliability and Security. 2007. Los Alamitos, CA: IEEE Computer Society Press.

[Bellavista] Bellavista, P., et al. Data Distribution Service (DDS): A performance comparison of
OpenSplice and RTI implementations. 2013. Split, Croatia: IEEE.

[Ciambrone] D. Ciambrone, V. Muttillo, L. Pomante and G. Valente, "HEPSIM: An ESL HW/SW co-
simulator/analysis tool for heterogeneous parallel embedded systems," 2018 7th Mediterranean
Conference on Embedded Computing (MECO), Budva, 2018, pp. 1-6.

[HEAVENS] HEAVENS security models (March, 18 2016), http://autosec.se/wp-
content/uploads/2018/03/HEAVENS_D2_v2.0.pdf

[Hepsycode] Hepsycode: A System-Level Methodology for HW/SW Co-Design of Heterogeneous
Parallel Dedicated Systems, http://www.hepsycode.com

[Klein] seL4: Formal Verification of an OS Kernel, Gerwin Klein et al.

[Mutation-TCG] Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten Tarrach, and Georg
Weissenbacher. 2019. Model-based, Mutation-driven Test-case Generation Via Heuristic-guided
Branching Search. ACM Trans. Embed. Comput. Syst. 18, 1, Article 4 (January 2019), 28 pages. DOI:
https://doi.org/10.1145/3289256

[Muttillo] V. Muttillo, G. Valente and L. Pomante, "Design Space Exploration for Mixed-Criticality
Embedded Systems Considering Hypervisor-Based SW Partitions," 2018 21st Euromicro Conference on
Digital System Design (DSD), Prague, 2018, pp. 740-744.

[Popov, 2015] Popov, P.T. Stochastic Modeling of Safety and Security of the e-Motor, an ASIL-D Device.
in Computer Safety, Reliability, and Security. 2015. Cham: Springer International Publishing.

[Popov, 2017] Popov, P., Models of reliability of fault-tolerant software under cyber-attacks in The 28th
IEEE International Symposium on Software Reliability Engineering (ISSRE'2017). 2017, IEEE: Toulouse,
France. p. 228-239. Available from: https://doi.org/10.1109/ISSRE.2017.23.

[SEBoK] BKCASE Editorial Board. 2017. The Guide to the Systems Engineering Body of Knowledge
(SEBoK), v. 1.9.1 R.J. Cloutier (Editor in Chief). Hoboken, NJ: The Trustees of the Stevens Institute of
Technology. Accessed DATE. www.sebokwiki.org. BKCASE is managed and maintained by the Stevens
Institute of Technology Systems Engineering Research Center, the International Council on Systems
Engineering, and the Institute of Electrical and Electronics Engineers Computer Society.

[SMC-response-times] B. K. Aichernig et al., ‘Learning and statistical model checking of system
response times’, Software Quality Journal, Jan. 2019, https://doi.org/10.1007/s11219-018-9432-

[Sousa] Sousa, P., et al., Highly Available Intrusion-Tolerant Services with Proactive-Reactive Recovery.
IEEE Transactions on Parallel and Distributed Systems, 2010. 21(4): p. 452-465.

[STRIDE] Kohnfelder, Loren; Garg, Praerit (April 1, 1999). The threats to our products. Microsoft
Interface.

© AQUAS Consortium 125

List of Annexes
Contain extended details or confidential information related to the examples presented in Chapter 4.

Annex 4-1: HAZOP Table (Medical Use Case)

Annex 4-2: HARA/TARA Analysis (Medical Use Case) (medini analyze)

Annex 4-3: Authentication: Descriptive Trade-Off (Medical Use Case)

Annex 4-4: SANs Model (ATM Use Case)

Annex 4-5: SANs Model (Industrial Drive Use Case)

Annex 4-9: Design-Stage Model (Space Use Case)

