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Executive Summary 
This deliverable, D3.2, reports progress in AQUAS Workpackage 3, Methodology. 

AQUAS aims at improving how the non-functional requirements of safety, security, performance (SSP) 
are dealt with during the product lifecycle for embedded computer systems, both in the sense of 
reducing the risk of surprises – unsatisfied requirements or unsatisfactory trade-offs between 
conflicting requirements – late in the lifecycle, when they would be more expensive; and of achieving 
this risk reduction in a cost-effective way. 

The AQUAS approach to methodology improvement is based on (a) applying methods (where possible 
supported by software tools) for combined analyses of project artefacts from the viewpoints of safety, 
security, performance (and possibly other non-functional requirements); (b) limiting the overhead cost 
of these combined analyses by only applying them at a limited number of points in the product 
lifecycle, called interaction points, where decisions can thus be taken about any need for rework, for 
agreeing trade-offs between conflicting requirements, or prescriptions for later steps in the PLC, e.g., 
more detailed requirements or further analyses that will be needed.  

According to the AQUAS workplan, the purpose of D3.2 is to "demonstrate, through example 
applications, the application of combined analysis and assessment of safety, security and performance, 
that is, how the 'interaction point' concept can be implemented in practice with the techniques 
considered" on small scale examples suitable for demonstrating the methods, so as to support their 
application in the use cases. 

In addition to this specification, the present document takes into account the recommendations from 
the first review of AQUAS, which asked for an "initial high-level SSP co-engineering methodology 
description" to help harmonize work in the project. Therefore, we have added in this document more 
detail to the introduction to the AQUAS approach previously provided in D3.1, including a "PLC 
conceptual model", which establishes a terminology for the essential components of the AQUAS 
approach, and preliminary requirements for tools supporting documentation of interaction points and 
traceability of information and decisions between them. 

The bulk of D3.2 (Chapter 4) is the set of descriptions of methods with which AQUAS is experimenting, 
including: methods for hazards and risk analysis addressing the effects of both accidental events and 
malicious attacks, and the effects of defense mechanisms introduced against either; extensions of 
standard design analysis techniques, like fault tree analysis, to combined analysis; probabilistic 
modelling to allow quantitative predictions of the implications of design decisions on risk; tool-
supported techniques for checking that software-hardware architecture designs satisfy execution 
performance requirements; and verification techniques (formal verification as well as testing) to detect 
problems in the implemented systems. These descriptions of analysis techniques are written as stand-
alone items that can be used for reference within AQUAS; they could evolve into supportive annexes 
in a standard for co-engineering of quality attributes. 

All in all, at this stage the trials of these techniques have been successful: no major obstacles have 
been encountered in applying them, and these techniques have helped to detect interdependencies 
between the SSP requirements and design decisions driven by them, to trace possible hazards and 
their causes, etc. Although the examples documented here are limited in scope, for the sake of 
readability, most of them are already being extended to address broader subsets of the demonstrator 
systems. The activities under way now in each demonstrator will lead to further interaction points, so 
that it will be possible also to assess the effectiveness of the approach and of the specific techniques 
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used in propagating necessary information about SSP interdependence along the PLC, and to learn 
some lessons about the appropriate placement of interaction points along the PLC. 
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1 Introduction  
The AQUAS project aims to promote effective and practical methodological advances for the co-
engineering of security, safety, performance of embedded computer systems.  

Workpackage 3 in the project pursues these goals through the definition of methods and approaches 
for the combined analysis and assessment of safety, security and performance, at "interaction points" 
in the co-engineering process. 

We recall the two-fold methodological problem that motivates the AQUAS project, and the approach 
that AQUAS is trialling: 

1. on the one hand, system and subsystem attributes like safety, security, performance are 
interdependent: a developer or assessor who only focused on one of these attributes at a time 
would risk leaving unresolved conflicts, e.g., it could happen that once the design has been 
engineered to achieve satisfactory security, the mechanisms introduced for this purpose violate 
some requirement concerning safety. So, separate processes for enforcing these different 
requirements risk costly reworks during development, or worse, accidents in operation, or 
expensive recalls.  
On the other hand, it may happen that trying to separately provide safety and security features 
produces unnecessarily costly solutions – e.g., through not noticing that memory protection 
enforced for safety reasons are adequate to satisfy a security requirement as well.  
So, the AQUAS approach includes methods for combined analyses of these various interdependent 
attributes, to assess whether a system satisfies its requirements from these diverse viewpoints 
and/or to assist design decisions. Many partners in the AQUAS consortium are tool developers 
whose products are being improved to form toolsets that support these analyses;  

2. on the other hand, analyses that encompass these various viewpoints can prove hard and time-
consuming: because these analyses may be inherently complex, and because they require 
interaction between specialists who typically belong to different cultures. E.g., the specialist 
knowledge and skills required to analyze or enhance a system or system design from the viewpoint 
of security typically belong to different specialists from those dealing with safety.   
The AQUAS approach is to limit this expenditure of effort by restricting these combined analyses 
to specific points in the lifecycle (called "interaction points"); this is in line with proposals that have 
emerged in industrial environments (cf e.g. SAE J3061 Cybersecurity Guidebook). 

Deliverable D3.2 is specified in the project workplan as follows: 

This deliverable will demonstrate, through example applications, the application of combined analysis 
and assessment of safety, security and performance, that is, how the “interaction point” concept can 
be implemented in practice with the techniques considered. The examples will be on small systems (e.g. 
parts of the demonstrators), suitable for demonstrating the methods so as to support application in the 
use cases. Each planned interaction point (one or more per use case) will be specified by collaboration 
of the one or more WP3 partners that provide the techniques, in general formats harmonised, as far as 
feasible, by consensus with the use case owners under coordination by City. 

In addition to this specification, the present document takes into account the recommendations from 
the first review of AQUAS in June 2018. The reviewers asked for an "initial high-level SSP co-
engineering methodology description" to help harmonize work in the project. This has been done, 
within the constraints of the planned bottom-up approach of AQUAS: to this end we have included 
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(i) a "PLC conceptual model", developed by Tecnalia (the PLC goal leader) by interaction with WP3 
partners and the various demonstrators; (ii) preliminary results from the focus group of tool 
developers who have studied the tooling requirements for documentation of interaction points and 
traceability of information between them. 

The AQUAS workplan calls for experimentation-driven innovation: the five demonstrators experiment 
with applying methodological advances in a set of concrete, diverse development projects. The goal 
for the end of the project is to gain and report experience in the application of the AQUAS approach. 
The demonstrators involve companies of various sizes and backgrounds and different industrial sectors 
(and thus, not least, different applicable standards and different regulatory agencies) so that from this 
learning exercise AQUAS plans to extract not only lessons useful to the individual companies and 
sectors, but also to be able to extract what is common and can be called an AQUAS "methodology". 

So, rather than a single universal, detailed and prescriptive process, the methodology emerging from 
the project is expected to consist of useful recommendations for applying the AQUAS approach, and 
especially lessons learned in more than one demonstrator, and thus validated, to the extent that is 
feasible. This does not preclude (a) some demonstrators producing more formal results, like 
prescriptive process manuals to be proposed for more extensive in-house piloting and validation; 
(b) AQUAS producing advice for standardization committees based on the lessons learned (and/or 
indeed on the problems that motivate AQUAS and their refined understanding derived from AQUAS 
experimentation. Standard-making inevitably lags behind awareness of problems). 
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2 Generic Requirements and Terminology for "AQUAS Methodology" 
Contributors: Tecnalia and City 

The methodological advances expected from AQUAS are a set of lessons learned that will help both 
the project partners and the industry in general to improve their processes for managing safety, 
security, performance of embedded systems, making them less surprise-prone and, if possible, more 
cost-effective by better exploiting synergies between solutions for safety, security and performance. 
These lessons concern both the use of tools and techniques, and the timing and organization of the 
"interaction points" when combined analyses are performed that take into account the various "non-
functional" requirements. 

The project takes a bottom-up, empirically driven approach to methodological development. However, 
to facilitate this development during the AQUAS project, exchange of experience between the 
demonstrators, and harmonization of the final results, this chapter includes additional information and 
terminology and an initial high-level description of a SSP co-engineering methodology, in the form of 
a “PLC conceptual model”. 

The concept of interaction point was discussed extensively in D3.1 (Sections 4.1-4.6) and a preliminary 
planning of interaction points in the demonstrators was provided, described according to a common 
template. Without repeating that discussion, we recall here that we call "interaction point" "both an 
activity and the point in a product life cycle (PLC) at which it occurs. The activity is "interaction" in that: 

a) experts in the various aspects of the system and its properties interact, e.g. security and safety 
experts;  

b) their analyses are combined in some way, that may be anywhere in the range from informal 
discussion and mutual critique to using mathematical models, typically supported by tools, to 
assess various measures of interest for alternative design options, or even a single, summary 
measure to be optimized (e.g., probability of an undesired event);  

c) the need for changes or decisions may be recognized that require an integrated view, e.g. 
because of inevitable trade-offs between desirable properties, and these trade-offs are 
discussed between the various experts to produce recommendations/decisions. 

About the need for interaction between specialist activities concerning e.g. security and safety 
analyses, and of these with the main development, validation or operation effort, this document, like 
most AQUAS activity, focuses on the technical concerns about interactions between the requirements 
produced by different specialisms and between the measures adopted to satisfy them. We do note 
that interaction between these activities would be required for various reasons even without these 
technical challenges. For instance, project scheduling has to co-ordinate the various analyses and 
development steps for efficiency, avoiding e.g. unnecessary waits and risk of needing rework due to 
late analyses. However, focus on the technical challenges is part of the AQUAS workplan and is justified 
by the difficulties they have been experienced to present to industry. 

2.1 Generic requirements for an AQUAS Methodology 
As development proceeds through stages of refinement from initial requirements and conceptual 
design through increasingly detailed design and implementation, and later, through the right branch 
of a V model, with verification and validation that the implementation matches progressively higher-
level requirements, the AQUAS approach assumes that at certain points in the process – interaction 
points - "combined analyses" are applied, which consider all the non-functional requirements. This is 
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especially important in the refinement process – the left-hand branch of the V – to ensure that the 
product at its current state of development satisfies the set of requirements developed, for the whole 
system and for its component parts, in the previous steps, and to take early corrective action as 
needed.  

2.1.1 Requirements on interaction points and combined analyses 
In any development process, some verification is needed after each step of refinement. E.g., a system 
description version Si includes, for a certain software component, just a specification; after the 
specification for that software component is turned into software code (a step of refinement), we have 
a system description Si+1. It is required that the system produced by refinement, Si+1 (the one that 
contains the code instead of its specification) still satisfies the properties specified for the previous 
version, Si. This verification implies: 

1. verifying that the specific software code implements its specification 

2. verifying that the refined system matches all the requirements defined for the system before 
refinement. The concern is that this is not necessarily guaranteed by the verification step in point 
1 above.  

To clarify point 2 above, suppose that Si was accompanied by a set of "non-functional" requirements 
for the whole system or its subsystems/components. It may happen that the system at step of 
refinement Si appeared to satisfy all these requirements.3 This may be because at that level of detail, 
some implementation matters were still undecided, which could determine whether that requirement 
would be really satisfied; and/or because some potential way that requirements could be violated had 
not been foreseen; and/or the required analyses could not be performed before this refinement (e.g., 
whether certain requirements are satisfied depends on implementation details previously unavailable; 
the execution time of certain software components, the security characteristics of certain libraries). In 
addition, analyses at the level of refinement of Si+1 may serendipitously discover potential problems 
(e.g., security threats, hazards, performance problems) and thus requirements that ought to have 
been, but were not, identified earlier. 

Thus, the ideal requirement for the combined analyses at an interaction point is that they verify that 
all real requirements (not just those formally stated) for the system and for its parts are satisfied. This 
is "ideal" in that complete knowledge is unattainable in principle, but in practical terms the 
requirements on these analyses can be stated as: 

• the analyses must be such as to ensure, collectively, that a set of previously specified 
requirements are still satisfied; one may aim to verify this for the whole set of requirements, 
or just for a subset whose satisfaction – it is expected – may have been affected by the 
previous step[s] of refinement 

                                                             

 
3 We take a broad view of what constitutes "requirements". Requirements can take many forms, and 
the boundary between "functional" and "non-functional" may be fuzzy; we take the broadest view: 
e.g., a requirement can be that a subsystem's architecture includes the feature that a standard 
recommends for Safety integrity level 4; or that that a subsystem exhibits a probability of failure on 
demand no greater than 10-4; or that a communication link be encrypted with 256-bit key AES. 
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• and/or the analyses must be suitable for revealing either unexpected problems (violations of 
written or unwritten requirements) (or unexpected opportunities to change the architecture 
in such a way that a single architectural mechanism can satisfy multiple SSP requirements) that 
can be expected to become visible at this stage of refinement. 

2.1.2 Interaction points and combined analyses through stages of the lifecycle 
Figure 2-1 gives a coarse-level description of how this refinement process proceeds between stages of 
the lifecycle, irrespective of what kinds of non-functional requirements are involved. At stage i+1, a 
certain amount of "refinement" takes place, as stated above, e.g., moving from coarse-grain design to 
detailed design of some system part, or from software specifications to code for some software 
component. Analyses follow, to check that these refinements are "OK": that all requirements inherited 
are satisfied. There are three possible outcomes: 

• all requirements are still satisfied, and the artefacts produced (the "system description", 
version Si+1 ) can be passed on the next stage of refinement; 

• some requirements are not satisfied, but it is judged that some change to the last 
refinements made can satisfy them, e.g., selecting faster chip or optimizing some code, 
will satisfy them. Then an iteration occurs within the same stage: these changes are 
applied and the analyses are repeated. We note that sometimes an iteration may be 
requested because the analyses reveal that the requirements are satisfied, but a better 
solution is nonetheless possible;  

• some requirements are not satisfied, and it is decided that the requirements inherited 
from stage Si cannot be satisfied. It is necessary to go back to the previous stage where 
those requirements were generated: e.g., some required functionality must be 
abandoned, or a longer response time must be allowed. 

In the AQUAS scenario, the analyses may deal with the various aspects of security, safety and 
performance. If requirements inherited at a stage cannot be satisfied, the decisions on new trade-offs 
may be for instance to relax a requirement on strength of encryption, or abandoning some 
functionality, or allowing higher cost or power consumption.  
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Figure 2-1: Stages of refinement. Analyses and discussions that involve two or more aspects among Safety, Security and 

Performance are the AQUAS Interaction Points 

Figure 2-2 shows an example of concrete activities and artefacts involved in a possible example of PLC, 
but still without discriminating between activities and artefacts belonging to different specialisms, like 
safety and security.  

Figure 2-3 and Figure 2-4, by contrast, show a possible organization of requirement elicitation and 
validation phases managed as separate specialist activities, and the interaction point appears in the 
Co-engineering part of Figure 2-4. 
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Figure 2-2: Fragment of activity diagram representing detailed stages of refinement for a possible concrete PLC 
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Figure 2-3: A possible concrete requirement production stage, including the subdivision of activities between different 

specialisms. 
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Figure 2-4: A possible interaction point following the requirement elicitation in Figure 2-3.  

2.1.3 Differentiating between SSP requirements 
The requirements whose satisfaction must be verified are often labelled as being "security 
requirements", "safety requirements", "performance requirements", etc. We must acknowledge that 
these labels are not mutually exclusive and thus this terminology can be somewhat misleading. For 
instance, security properties have to do with what a malevolent adversary might achieve through the 
system; safety properties address ways the system could cause harm; and a reasonable goal for an 
adversary is actually to use the system to cause harm: so a requirement for system safety dictates 
requirements for system security. More complex dependencies are in fact common. It is common, for 
instance, that a safety requirement at system level demands that certain computations be performed 
within acceptable response times or throughput requirements (performance requirements); therefore, 
a security requirement is that adversaries must not be able to cause violations of these performance 
requirements; and once security mechanisms are added for this purpose, there will be further non-
functional requirements of reliability and performance of these mechanisms, to give sufficient 
assurance that they will both perform their security functions and not themselves become a cause of 
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under-performance that affects safety. This interconnection between the various "non-functional" 
properties of a system and of its parts is indeed a basic motivation for the AQUAS project.  

Nonetheless, requirements, and the activities that they trigger, can be labelled as, e.g., 'security' 
requirements on the basis of their being so labelled in standards and guidelines; or because the work 
they require is work by security specialists. In these cases, the labelling applied is not meant to suggest 
that these qualities are separate and independent from other qualities like safety or performance, but 
to document organizational aspects of the PLC. 

2.1.4 Tooling for combined analyses 
AQUAS is experimenting with various tools and techniques for combined analyses. However, it is 
expected that AQUAS methodological conclusions will set no constraints on which tools and 
techniques may be used for any stage of combined analysis: this freedom is required because: 

• there are many suitable choices. In AQUAS itself, the set of tools and techniques being trialled 
includes alternative means of pursuing the same goals; alternative tooling options exist for the 
whole PLC; 

• each company may have an established set of tools and techniques, dictated by its 
regulatory/standardization/certification regime, or by previous investment in software and 
training, and would want to extend this set to support co-engineering in a way that takes 
advantage of the previous investment, so will take into account factors like similarities of technical 
languages used, and of tool interfaces, tool interoperability, etc. 

On the other hand, tool vendors that aim to support the AQUAS approach will aim to create a toolset 
of interoperable tools. Such efforts are indeed under way in WP4. 

2.1.5 Where in the product lifecycle interaction points should occur 
In D3.1 (Section 4.2) we identified some requirements on when interaction points should occur, and 
identified two ways of triggering an interaction point (a set of combined analyses): 

• "statically scheduled" interaction points, decided in advance to take place at pre-specified points 
in the PLC. These should be scheduled to be frequent enough that any necessary rework identified 
will not be too expensive, but also rare enough not to be an excessive overhead cost. We expect 
that: 

o a first interaction point must necessarily take place at the system requirements and 
concept phase of a project, to ensure that the requirements set are at least in principle 
consistent, that essential potential conflicts are identified, and that the conceptual system 
design envisaged is at least potentially adequate to satisfy them; 

o later interaction points would be scheduled for points in the PLC that precede important 
investments of effort, time and money: e.g., after specification of any bespoke software 
required in a system, before the implementation of this software proceeds, so as to avoid 
having to rework these specifications after problems are revealed in the implemented 
software. 

• interaction points that are triggered by detection of some problem, which makes it desirable to 
perform combined analyses without waiting. These will require management mechanisms for 
reporting the problems to allow the decision to trigger these interaction points. We can expect 
that if a development organization is very effective at detecting problems, to trigger these IPs as 
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needed, it will need fewer "statically scheduled" IPs, and thus possibly achieve lower overall costs. 
This 'effectiveness' would depend on many factors: the type of systems they develop, their 
relationship with subcontractors and suppliers of off-the-shelf parts, and their management 
culture. We do not expect AQUAS to develop enough experience to recommend criteria for 
organizing these "dynamic" IPs. It can be expected that most organizations adopting an AQUAS-
like approach would initially rely on scheduling IPs statically, and develop experience over time 
that might enable them to reduce their dependence on "statically scheduled" IPs. 

2.2 Common terminology: The Product Lifecycle Conceptual Model 
The AQUAS project aims to produce improvements, in the processes for co-engineering of quality 
attributes, that are flexible enough to satisfy the needs of diverse application environments – industrial 
sectors as well as individual companies and projects – as represented by the AQUAS use cases. 

To allow interchange of experience within the project, and for AQUAS outcomes to be usable outside 
AQUAS, a common understanding of the essential common elements of the process is required. The 
AQUAS Conceptual Model presented here supports this goal by defining the relationships between the 
essential concepts introduced in AQUAS with those that belong to the common understanding of 
product lifecycles. This model has been developed by observing, and generalizing from, the processes 
in the AQUAS use cases and relating them to the overall concepts introduced in D3.1.  

This document gathers general concepts of software engineering, relating them to existing standards 
and elaborates on new concepts which are specific to the co-engineering challenges. The conceptual 
model is the ground on which to build a comprehensible AQUAS methodology with a unified vision 
regarding concepts and terminology. 

2.2.1 The 4-model structure of the AQUAS conceptual model 
The AQUAS conceptual model is divided in 4 interconnected components. 

 
Figure 2-5: The 4-model structure of the AQUAS conceptual model 

The PLC model, product and organization model, and quality analysis model gather basic concepts 
which are needed to understand the latest model in this document, the CE model, which serves to 
describe the ground for the AQUAS methodology. 
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A layered figure can be used as a metaphor. On the “surface”, the Product and Organization layer is 
followed by the Quality analysis layer. These two layers are much more mature in systems and software 
engineering than the Co-Engineering layer which is the focus of AQUAS (the Co-Engineering for Quality 
layer, at the bottom of the figure). The vertical layer of the Product Life-Cycle provides the time 
dimension where the product and organization evolve, and where the quality analysis and co-
engineering takes place across the different stages. 

 
Figure 2-6: Layered representation of the analyses 

As mentioned before, this conceptual model sets the ground where the AQUAS methodology is built; 
however, the conceptual model per-se provides limited support for guidance. The conceptual model 
provides a common understanding of the concepts that can then be instantiated in each specific 
project using their own implementation of the concepts and their relations. While we recommend 
reading all the sections, an expert might want to go directly to the Co-Engineering layer section. 

2.2.2 Product Life-Cycle Model 

2.2.2.1 Introduction to the PLC Model 
The Product Life-Cycle (PLC) is of paramount importance in the AQUAS project, as co-engineering must 
span different life-cycle stages. Focusing only on one stage (e.g., requirements or software 
implementation) would limit the project to a very narrow scope as well as defeat some of the goals of 
AQUAS to discover when and how often IPs should occur. Thus, different AQUAS goals were defined 
to effectively manage co-engineering inside and across the PLC.  

 
 

PLC is defined as the evolution of a system, product, service, project or other human-made entity 
from conception through retirement. 

ISO/IEC/IEEE 15288 
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Figure 2-7: SEBoK core concepts and their relevance to the PLC 

These concepts helped to define the AQUAS PLC model. Notably, we extended previous PLC model 
concepts, and, introduced links between the PLC model and the product model. 

2.2.2.2 AQUAS PLC Conceptual Model 
The following figure shows the main concepts of the PLC model: 

The following figure shows an excerpt of the SEBoK Core Concepts [SEBoK] that acknowledge the 
Life-Cycle Model as a prime entity supporting systems engineering. We added the circle to identify, 
inside it,  concepts relevant to the PLC. They propose a PLC model containing several stages and 
referencing several PLC processes. These processes are then linked to the evolution and production 
of the system. 

 
SEBoK Core Concepts 
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Figure 2-8: The Product Life Cycle (PLC) model 

A PLC contains a set of Stages regarding “the evolution from conception through retirement” 
(ISO/IEC/IEEE 15288). A possible instantiation of the stages can refer to the phases of the V-Model, but 
it is open to instantiate other PLCs, given that each application domain might be required to comply 
with a PLC standard, or to follow an in-house methodology. Stages in turn contain Steps, describing 
the process at a more detailed level.  

Stages and steps are linked via the containment relation. Iterative processes where one or more 
iterations are used (e.g., to refine a work product) can be expressed. It was also stated by industrial 
partners of some UCs that during the PLC, more than one stage can happen in parallel. Likewise, steps 
can also happen in parallel to other steps. 

Then we have a part of the PLC model which is related to the Decisions and the rationale management 
(managing the rationale of each decision) needed to advance in the PLC, to move backwards, or to 
request changes. A Decision is a Step of the PLC. In the figure we added representative examples, as it 
is not possible to enumerate all the possible types of decisions that can happen in specific projects. In 
the next figure we focus on two examples, to show how each decision can be related to various 
concepts. The Decision to Go To Next Stage relates to the involved Stages, while the Changing 
Requirements Decision is directly related to a specific concept in the Product Model. 
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Figure 2-9: Relation between the PLC model and the product model 

2.2.3 The Product and Organization model 

2.2.3.1 Introduction to the Product and Organization model 
The Product and Organization model focuses on the diverse types and versions of the work products, 
as well as on the teams, skills, and tools at hand. 
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Figure 2-10: ISO/IEC/IEEE 42010 Architecture Conceptual Model 

 

The ISO/IEC/IEEE 42010 focusing on the Architecture as a key work product. We can also observe how 
the stakeholders and their concerns are represented.  

 
ISO/IEC/IEEE 42010 
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Figure 2-11: SEBoK core concepts related to work products and organization 

 

2.2.3.2 AQUAS Product and Organization conceptual model 
A work product (and its various versions) is created by a team or a set of teams. A team is expert in a 
set of techniques, usually supported by tools available to the team, but in some cases not tool-
supported, but applied manually. The work products can be very diverse. Examples can be 
Requirements, Architecture, System (and the hierarchy of sub-systems), Documentation (such as risk 
management documents or Assurance cases). The application domain will define the peculiarities 
regarding the required work products. 
 

SEBoK conceptual model related to Work Product and Organization. Given the diversity of work 
products, SEBoK authors do not give an exhaustive list. Regarding organization, they describe the 
organization as a set of roles and systems engineers which are qualified in different 
competencies/skills. 

 

 
SEBoK Core Concepts 
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Figure 2-12: The product and organization model 

The work product concept is also related to the PLC model. Notably, a PLC stage uses work products 
as inputs and produces outputs. Also, a PLC stage can have a set of associated work products which 
are expected to be created or refined during the stage. Also, a team, or a set of teams, are involved in 
the PLC decisions that need to be made. 

  
Figure 2-13: Relation between the PLC model and the product and organization model 

 

2.2.4 Quality Analysis model 

2.2.4.1 Introduction to the quality analysis model 
Quality analysis in the PLC of a system is essential for checking that all the system requirements 
regarding functional and non-functional properties are satisfied. 
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Figure 2-14: SEBoK core concepts related to product quality 

 

2.2.4.2 AQUAS Quality Analysis model 
A quality analysis is a step in the PLC where, taking as input existing work products, a team analyzes 
one or several quality attributes (e.g., safety, security, and performance) using appropriate techniques 
and tools. A quality attribute can be an aggregated quality attribute like dependability which 
aggregates other, atomic quality attributes. The quality analysis results (e.g., metrics quantifying the 
quality attribute, reports) support the decision-making process in the PLC that is to be triggered by the 
quality analysis. A quality analysis result can be, in some cases, a work product, although this is not 
represented in the model. The quality analysis consolidation is a special type of quality analysis, i.e., 
the consolidation of results of different quality analyses for the same quality attribute. 

The SEBoK conceptual model takes into account System properties, which refers to the relevant 
quality attributes of the system. 

 
 

SEBoK Core Concepts 

As mentioned before, the matching notion in ISO/IEC/IEEE 42010 is "Concerns" of the various 
stakeholders. 

ISO/IEC/IEEE 42010 
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Figure 2-15: Relation between the PLC model, the product and organization model, and the quality analysis model 

2.2.5 Co-Engineering model 
A focus area within an organization involves personnel with a set of specialized competences (e.g., 
security), and deep knowledge of the system from their own perspective. Mainly because of this 
specialization, the team (or set of teams) within a focus area does not continuously interact with other 
teams of the organization, and the work products that they manage may have separate workflows. 
Because of this separateness, focus areas are sometimes described as "silos" or "islands". 

An interaction point is a step in the PLC and a special type of quality analysis where several quality 
attributes belonging to different focus areas within the organization need to be analyzed together. It 
also contains a set of specific quality analysis techniques called interference analysis techniques. 

Interaction points can be scheduled to occur at predefined moments of the PLC, or the need of an 
interaction point can be identified by a focus area during their activities. Regarding the latter, an 
additional type of PLC decision consists of triggering an interaction point. 

In the model, interference analysis techniques may mean concrete techniques, such as FMVEA or 
HAZOP, or families of techniques, such as simulation, dependability analysis techniques, 
parametrization of quality attributes tradeoffs, sensitivity analysis etc. A more formal hierarchy of the 
families of techniques and concrete techniques is on-going work. 
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The Co-Engineering model also defines another type of decision called a trade-off decision where the 
involved teams need to explore and select the most appropriate solution (work product delta) to the 
engineering conflict. 

In the diagram, the Interaction Point concept is not directly linked to work products; however, given 
that an Interaction Point is a type of Quality Analysis, it inherits this relation as well as all the other 
relations of the Quality Analysis concept. 

 
Figure 2-16: Relation between the PLC model, the product and organization model, the quality analysis model, and the co-

engineering model 

2.2.6 Traceability across the PLC 
The presented model is expressive enough to capture relevant traceability information. This subsection 
discusses how traceability across the PLC can be achieved when these models are instantiated in terms 
of documents and other artefacts produced, actions decided, etc., in a specific project. First, the PLC 
differentiates the stages, and the stages and steps are activities in the PLC where we can add 
traceability to their corresponding work products’ versions, the interaction points, and the decisions 
that took place in each PLC entity. In this way, for example, we can enable complete traceability if an 
interaction point triggered the decision to go back to a previous stage in the PLC to reconsider some 
requirement, or to make changes in the work products. 

The next chapter goes into more detail about requirements on tooling to support traceability. 
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3 Tooling Requirements for Supporting Interaction Points and 
Traceability 

Contributor: Magillem 

The AQUAS approach implies that: 

• Each IP will involve combined analyses encompassing various attributes; various forms of 
combined analyses are supported by the various tools available and/or enhanced in AQUAS, and 
part of WP4 work concerns the interaction between such tools; this chapter does not address these 
aspects; 

• There will be an information flow from an IP to the later steps and stages of the lifecycle and in 
particular to the later IPs.  

This chapter focuses on this second aspect, which lies at the interface between WP3 and WP4. A focus 
group was formed to analyse the requirements on tooling that arise specifically from the need to 
support IPs, that is, not just supporting combined analyses for safety, security and performance, but 
structuring the application of these combined analyses in the PLC in terms of IPs. The members were: 
Magillem (Emmanuel Vaumorin, Matthieu Pfeiffer, Vincent Thibaut), Intecs (Silvia Mazzini, Stefano 
Puri) and Ansys (Marc Born). The method adopted was to:  

• Consider the inputs from WP3 

• Use the description of the IPs from all UCs and analyze and generalize to feed and verify the 
proposed concept 

• Define and propose a specific use model for IP 

• Take into account the functionality available in existing tools. 

This work, reported in this chapter, had these objectives: 1) to enable the implementation of support 
for IPs in several tools, provided by partners in the AQUAS project or to be developed further; 2) to 
ensure that those tools apply the concepts developed in the AQUAS methodology work on co-
engineering; and 3) to illustrate the applicability of the tools with generic examples. We have 
considered the inputs from other deliverables of WP3, and also the descriptions of tooling support for 
individual use cases in WP4 deliverables.  

3.1 General scenario for supporting IPs 
The following characteristics of an envisaged scenario for applying an AQUAS PLC have been extracted 
from D3.1 Chapter 4, on Interaction Points. They have been taken into account in the requirements for 
the tools supporting interaction points: 

• IPs aim at ensuring satisfaction of various non-functional requirements, where "ensuring" means 
"achieving and demonstrating" 

• It may not be feasible to expect a single team of experts to have the skills to perform specialist 
tasks related to different requirements, e.g. both cybersecurity and safety tasks to be performed 
by the same expert team 

• So, specialists of different cultures are separated in "focus areas", or "silos"; information easily 
flows vertically within a focus area (a specialism) but not between them 
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• Non-integrated processes are thus present to deal with safety, security, performance, and 
communicate in more or less well-defined ways. In AQUAS these established means for interaction 
are known as interaction points 

3.2 Typical expected needs 
Some expected needs for recording and tracing IPs in an AQUAS-style PLC are : 

R-IP01: For each IP, it is necessary to record that it took place, which analyses took place, what they 
concluded 

For instance, the context of the interaction point creation, the team[s] involved, the list of modelling 
artefacts to be taken into account, the questions raised, the analyses which have been conducted, the 
conclusions of the analysis, etc. 

R-IP02: For each IP, it is necessary to record what decisions were taken as a result of the analyses 

For instance, a record that all was judged fine, so that development work would proceed further; or 
that more in-depth analyses were required; or that the requirements for some subsystem had to 
change (and what changes were decided); and for each decision taken, its genesis (who was involved 
and signed them off) and rationale (recorded so that at later stages in the PLC one can understand why 
the product is the way it is). 

R-IP03: For each IP, it is necessary to record the changes made to artefacts as a result of decisions 
made 

For instance, documenting that a specific parameter of the hardware platform was investigated and 
set to a value because it gave the best performance of software execution, while satisfying a safety 
requirement. 

R-IP04: For each IP, it is necessary to record which iterations of that IP took place 

The analyses performed at an IP may prompt changes to artefacts (possibly backtracking to an earlier 
stage in the PLC: e.g., an IP may trigger a decision to change requirements decided at that earlier stage), 
so that the IP (the set of analyses and the decisions) then must be repeated. The information to be 
maintained thus includes iterations of the IP, and, for each iteration, the various information about 
analyses, decisions, and artefacts affected or produced. 

R-IP05: For each IP, it is necessary to record the artefacts produced for and by the analyses  

Each analysis might involve models developed for that analysis - e.g. a SAN or FT model or flow chart, 
etc. and the outputs produced using that model. 

R-IP06: For each IP, it is necessary to record any warnings or request for action to be propagated to 
later stages of work 

This may involve later IPs, e.g. such a warning/request could be: "there is a potential problem with 
performance-security interaction, and whether this problem in fact arises needs to be checked once 
the code for subsystem Z has been written". 

Remark: The focus group observed that these are special cases of more general capabilities, and chose 
to define these more general capabilities that would allow IP-supporting tooling to be configured for 
the needs of a specific AQUAS-enhanced PLC in a specific organization and industrial sector. These are 
listed in the next section. 
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3.3 Specific usage requirements for tools supporting Interaction Points 
The following specific requirements for tools supporting interaction points are defined. These are 
requirements for the tool set chosen to support an AQUAS-style PLC: no specific set and allocation of 
responsibilities between them is assumed. 

R-IP07: The tool set shall provide functionality to aggregate references of design artefacts or 
documents 

The role of the tooling is to enable the IP stakeholders to select some artefacts in the information silos 
and to use references to those artefacts in order to create a new level of information at the IP level – a 
useful description of the IP and its results – aggregating the referenced data. For instance, a report on 
the combined analyses could include some references to several parameters concerning several 
components that are part of the subsystems involved. 

R-IP08: The tooling shall not be only file-centric but should also offer some support for modelling 
semantics  

Document formats may be very diverse, and could include special formats used by modelling tools. For 
instance, a reference to an artefact could be performed directly in a modelling tool in order to facilitate 
the selection of artefacts by the IP manager. For instance, a modelling tool could provide to an IP 
stakeholder the ability to select model elements as artefacts to be used in the IP, so that the references 
can be stored to achieve traceability between the IP report and the model elements referenced. The 
specific modelling semantics to be supported are not defined here, and will be the decision of each 
tool vendor depending on which other tools they wish to integrate; a minimal requirement, though, is 
that the mechanisms for referencing artefacts shall be compatible with any “text” based document. 

R-IP09: The tool set shall provide a capability to collect definitions of exploration fields 

Certain analyses may involve exploration by an analysis tool of a range of parameters or design 
characteristics, e.g. to perform sensitivity analysis or to seek feasible, or optimal, trade-offs. The tool 
set shall support entering the required selections of exploration field parameters for several types of 
artefacts. 

R-IP10: The tool set shall bring traceability capabilities 

The tool set shall have traceability capabilities to enable browsing from an artefact reference to all 
other connected artefacts. This kind of traceability capability, common to all tools, could be provided 
for instance by a traceability tool, but this requirement does not mandate that solution.  

R-IP11: The tool set shall be compatible with any flow choices 

To do so, the tooling shall be flow-agnostic, that is to say it will not introduce any specific semantics in 
the type of artefact to be managed. For instance, if the artefact is the representation of a fault tree, 
the tools shall provide a way to reference this fault tree or any element in this fault tree, at any 
granularity. So, any artefact is considered just as an artefact and in this example there is no need to 
specify that this artefact is a “fault tree”; we leave this work to the IP description. 

R-IP12: The tool set shall provide a capability to register and aggregate the states of the artefacts 
relevant for a decision 

The IP stakeholders shall be able to describe how the referenced artefacts are impacting their own 
artefacts, or additional artefacts created at the IP level. For instance, the tool set must allow a software 
stakeholder (that is, a person in charge of SW-related decisions in the IP) to record explanations about 
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how executing some software components on certain hardware processors could have an impact on 
execution times and on the safety requirements. 

R-IP13: The tool set shall support the decision process but not take into account the flow of decisions 
downstream of the IP 

The tooling shall provide the capability to manage the evolution of the IP iterations, but it might not 
provide capabilities to manage the decision flow itself. That is, when the interaction point has been 
fully described in the tool set, with decisions requiring actions within the silos, the IP record is then 
frozen and each silo manager goes back to their activity to decide how this impacts their next tasks to 
be performed. The results of these tasks performed within the silos may be fed back, as required, into 
a further iteration of the IP. 

R-IP14: The tool set shall not integrate the loops of the decision process 

The tooling functions for IPs shall provide support to describe the IP itself, but not the loops of silo 
activities in the flow that leads to the iterations of IPs. That is to say that the tooling shall support the 
management of several versions of the IP itself (see following requirement), but not include the silo-
specific processes that use the information from the IP. 

R-IP15: The tool set shall provide history information for information stored in IP description 

The tooling shall provide versioning capabilities to support iterations of the IP: in Figure 3-1, an IP can 
have two or more iterations: records of all iterations, with modifications or additions to artefacts, shall 
be available for later reference, for instance to analyze the evolution of the design. 

R-IP16: The tool set shall provide a capability to timestamp the referencing of information fragments4 

The referencing of the fragments and of several modifications in the artefacts must be timestamped. 
A fragment (of information) is an atomic reference to a design artefact. When a fragment is used in an 
IP report, this fragment is timestamped and referenced. That means that in a further version of the IP, 
the fragment in reference could be changed (for instance I say that I’m not anymore taking into account 
this parameter A of the hardware platform but parameter B instead), and also the artefact could 
change (for instance the fragment on parameter A was done when A=1 and in another iteration, A=2). 
All those modifications must be recorded and traced to help IP stakeholder to be informed of 
modifications that could impact the analysis or further decision flow. 

Note: Focus on Safety/Security/Performance trade-offs 

In order to provide capability of inconsistency detection, risk analysis, and/or conflict detection, the 
tooling is dedicated to Safety/Security/Performance trade-offs, but other use models not defined here 
could be supported, because the implementation choices shall be generic. 

In AQUAS, some tools like Magillem’s are evolving from being general-purpose tools to include 
features to support IPs specifically, while others like CHESS or Medini, etc., which are natively able to 

                                                             

 
4 In this context:   
• An artefact is a piece of the design description; for instance: a processor instance in a hardware platform description in 

XML documentation standard 
• A fragment (of information) is, in this example, the reference to that processor, so the piece of XML that is used in the 

standard to identify this processor; so the tool should store a reference of this fragment of XML code.  
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support a selected set of analyses, will take these requirements into consideration as inputs for 
evolution in the longer term. 

3.4 Requirements on the use flow 
The following figure illustrates how the tools dedicated to interaction points must manage the data 
used in the interaction points in a co-engineering context. 

 
Figure 3-1: Use flow of an interaction point. 

First one considers “Artefact Silos” which are the repositories of information dedicated to each specific 
modeling activity. These silos are used to support the product life cycle of the artefacts used in the 
activity. Those artefacts are considered as documents, in which a list of fragments of information are 
contained (represented as the pentagons). This first phase is detailed in Section 3.5.1. 

Those fragments are defined at any granularity (fine or coarse) requested by the interaction point. The 
tool set supporting IPs must provide the capability to select the documents of each silo that are of 
interest for the interaction point and then provide the capability to select the fragments of interest. 
This import activity will be detailed in Section 3.5.2.  

Then, in an instance of interaction point, at the first iteration, the fragments of information will be 
made available as references to realize an aggregation of data. This aggregation of data will be 
explained in detail in Section 3.5.3. The tools can generate the IP report #1 which will be used in the 
specific decision flow of every modeling activity. The cycle can then iterate with the same steps: for 
the next iteration of the interaction point, the same references or some additional ones are available 
for an updated aggregation of data and then for the generation of the new IP report. The IP tooling 
will provide features to trace the evolution and modification in referenced fragments. 
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3.5 Requirements on the use model 
In this part, we detail the steps of the use model. In this use model, we have two kinds of roles:  

- the silo manager is responsible for delivering the artefacts of interest and the fragments of 
information from its silo to the IP manager.  

- the IP manager is responsible for collecting artefacts and fragments from each concerned silo 
manager, to build the IP description, to aggregate data and to build the IP report. 

3.5.1 Use model-Step 1: Files collection 
The tooling provides a capability for users to select artefacts, and creates references to them through 
fragments of information across all design files. This gives the ability to have references to all files that 
are to be used in the analyses and/or discussions that are part of an interaction point. These may 
include several files for each silo (examples: hardware architecture description, requirements, 
performances reports, configuration documents, etc.). Also, previous versions (if they exist) of the IP 
report are imported. The tools fragment the documents (coarse or fine grain). At this point, the IP is 
identified with its name and version, and in a first phase the IP stakeholders have access to this list of 
references of files located in the silos, and for each file, the contained fragments of information is 
available for selection in the next phase. 

 
Figure 3-2: File collection in the IP. Note: "IP project" is, following ECLIPSE terminology, a tool-defined entity in which the 

references and other information created for the IP are stored. 

3.5.2 Use model-Step 2: Fragments collection 
In each of the selected files, the fragments of information to be used for the IP activities are selected 
and referenced into an initial version of the IP report. An IP will always involve some kind of analysis, 
plus perhaps some discussions, explorations of possible trade-offs, decisions, changes to various 
artefacts. For instance, we consider the activity of seeking a trade-off. 
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Figure 3-3: Fragments collections in the IP 

3.5.3 Use model-Step 3: Trade-off description 
Starting from the initial IP report, the IP manager writes, with the assistance of the silo managers, in 
natural language, the expression of each trade-off in the IP. 

 
Figure 3-4: Trade off description 

3.5.4 Use model-Step 4: Action plan description 
All actions decided that must be performed as silo activities in relation to the selected artefacts are 
described in the IP report. Thus, this report will be referenced and used by the silos to perform redesign 
of system parts, changes to requirements, explorations of candidate designs, etc. 

 
Figure 3-5: Action plan description 

 

3.6 Conclusion 
This chapter proposes a list of requirements for implementing tools that support the IP concept in 
AQUAS, in its entirety or limited to some of the functions required by IPs. These requirements are 
generic enough to support a variety of design and decision flows. They have been produced taking into 
account some existing functionalities of AQUAS partners’ tools, so that the effort to prototype a 
demonstration solution in the frame of the AQUAS project is minimal; but other solutions may be 
envisaged following these requirements, ensuring potentially broad dissemination in the industry. An 
example of use of the Magillem Content Publisher (MCP) to support IPs in UC4 (industrial Drive) is in 
section 4.2.5 of deliverable D2.3.4. 
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4 Methods for Combined Analyses 
This Chapter presents methods for combined analysis, which are being applied in the AQUAS project. 
For clarity of explanation (as per the AQUAS workplan), the methods are presented via small examples 
of application to problems in the AQUAS use cases; but they are grouped independently of the use 
cases, as the goal is to explain techniques that can be applied in a range of domains. In fact, several of 
the methods are presented with examples in more than one use case; for example, extended fault-
tree analysis applied in both the space and medical use case (Section 4.9), and the Hepsycode 
methodology and framework applied in the ATM and space use cases (Section 4.6).  

The methods are presented in three categories. The first category includes methods related to 
hazard identification that can be applied at the stage of requirement specification and conceptual 
design: HAZOP and HARA, and trade-off analyses triggered by the identified hazards (Sections 4.1-
4.3). A second group of various methods (Sections 4.4-4.6) supported by various tools is applicable in 
lifecycle stages following the Requirements Phase for various firms of combined analysis of safety, 
security and performance (Sections 4.7-4.9). The final category of methods is concerned with 
verification and validation activities, for example in terms of conformity of source code with its 
requirements, or verification of timing requirements (Sections 4.10-4.13). Each method is defined by 
its aim, method, results, lessons learned, and when appropriate, further developments of the 
technique, or applications of it planned within AQUAS.  

4.1 Hazard and Operability Analysis for identifying safety/security interactions 
at requirement/conceptual design stage (Medical Use Case Example) 

Contributors: City and UC2 partners 

Hazard and operability (HAZOP) analysis [IEC 61882:2001] is a structured and systematic method to 
identify potential hazards and determine appropriate mitigation strategies. Although originally 
developed for detecting safety hazards due only to accidental causes (that is, not security-related), and 
not generally applied to security matters, here we confirm its utility in a combined analysis involving 
malicious causes of hazards, i.e., the combined analysis of both safety and security. 

A HAZOP exercise was applied in the Requirements Phase in the medical use case (Use Case 2).  

We recall, as discussed in Deliverable 2.2 Chapter 1, that UC2 concerns the extension of an existing 
device for monitoring blood pressure and neuromuscular transmission to make it able to control an 
infusion pump and perform closed-loop control of these physiological parameters. 

The subset chosen for analysis is a specific, informative use scenario: closed-loop control of blood 
pressure during a surgical intervention. This use scenario is expected to exhibit many of the new 
hazards that arise when extending RGB’s previous monitoring device to the new, closed-loop control 
device. Specifically, it describes the steps and possible user interventions that may occur when 
maintaining a patient’s mean blood pressure at 70 mm Hg by automatically calculating and infusing 
appropriate doses of Sodium Nitroprusside (SNP) and Glycerine Trinitrate (GTN).  

4.1.1 Aim of the example 
The goal of the HAZOP analysis was to review the system requirements and preliminary design of RGB’s 
closed-loop device, to identify potential hazards that could arise during the identified use scenario. 
Importantly, HAZOP relies on bringing together the various viewpoints/knowledge of the participants 
in a HAZOP session (in this case, for example, Trustport provided the security viewpoint, City 
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represented human factors concerns). Potential hazards, especially those with a high likelihood and 
severe consequence, highlight areas in the system that require appropriate remedies, or additional 
analyses about the likelihood of deviations, their consequences and the effectiveness of mitigation 
measures. Such remedies could result from work/suggestions by a single partner, or require the 
collaborative analysis of various partners of different specialties. Among further analyses that can be 
triggered, potential hazards, or feared events, identified in the HAZOP can be input to e.g. developing 
fault trees, and FMVEA tables, which further enhance the understanding of hazards and their 
propagation within the system.  

4.1.2 Method 
For use as a HAZOP worksheet, an online, shared Excel sheet was set up with the headings shown in 
the example in Table 1. Four two-hour teleconferences were run between June and September 2018. 
A HAZOP analysis proceeds by systematically applying a series of guidewords to each step in the use 
scenario: for each guideword, session participants try to identify potential deviations of the system 
behaviour from the design intent. The guidewords5 act as triggers to stimulate participants to envisage 
how the deviation might occur and its potential consequences. For each deviation, possible causes and 
likelihood, consequences and severity, existing safeguards, and action points (some requiring work 
outside the scope or timeframe of the AQUAS project) were documented. A recorder documented the 
discussions in the HAZOP worksheet. As the teleconferences were relatively short for the required task, 
participants were also encouraged to individually update/add to the shared spreadsheet using a “name 
tag” to identify their entries. After the fourth session, partners noticed the analysis had reached a 
phase of diminishing return and the HAZOP table for this scenario was deemed to have adequately 
demonstrated the usefulness of this style of HAZOP for this role in AQUAS-style co-engineering.  

4.1.3 Results 
Below is an example of a single row from the HAZOP analysis worksheet. The complete worksheet can 
be found in the annex (status: project confidential).  

                                                             

 
5 The guidewords applied were: no (not, none), other than (wrong/maliciously), early/late, 
before/after, faster/slower, where else, part of, less (lower), more (higher), as well as (more than), and 
reverse.  For each guide word, participants were reminded to consider both accidental and malicious 
causes of deviations. At least one previous study of HAZOP applied to security (Winther R., Johnsen 
OA., Gran B.A. (2001) Security Assessments of Safety Critical Systems Using HAZOPs. In: Voges U. (eds) 
Computer Safety, Reliability and Security. SAFECOMP 2001. Lecture Notes in Computer Science, vol 
2187. Springer, Berlin, Heidelberg ) proposes a far more complex set of guidewords but we opted for 
this simpler method considering that long lists may end up being counterproductive by taxing the 
ability of participants to stay focused. 
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Table 4-1: Example row from the HAZOP analysis 

Step in the 
Use 

Scenario 

Guide 
word 

Deviation 
Identified 

Possible 
Causes and 
Likelihood 

Consequences 
and Severity 

Existing 
Safeguards 

Notes/ 
Recommendations 

Action Points 

Device is 
connected 
to tree of 
infusion 
pumps and 
user 
verifies 
that the 
connection 
is 
performed 
correctly 

Other 
than 
(wrong) 

Device 
connects 
to a 
different 
pump 
than the 
one 
intended.  

 

Possible with 
point-to-
point 
connection if 
the user 
connects the 
wrong cable, 
or with 
Ethernet 
connection.  

 

Likelihood 
depends on 
hospital 
practice/user 
experience.  

Could change 
dose rate for 
another patient, 
and/or fail to 
provide 
calculated drug 
dose to given 
patient.  

 

Thus, 
major/maximum 
severity level 
consequences.  

(1) Device or 
manual warns the 
user that they 
need to verify the 
pump's behaviour 
or the dose rate 
being delivered.  

 

(2) User verifies 
that pump is 
performing 
correctly by 
observing its 
behaviour.  

[City] Existing 
safeguards rely 
heavily on the 
user. Perhaps 
other safeguards 
could be built into 
the device to 
assist. 

 

[RGB] It could be 
possible to include 
in the device a 
previous validation 
window to check 
the connection to 
the right infusion 
pump. 

To study 
general 
security 
requirements, 
especially 
given 
Ethernet 
connection 

 

The HAZOP analysis sessions revealed a number of interesting results that can be grouped into four 
main categories: (1) areas requiring further specialist analysis, (2) areas requiring further combined 
analysis, (3) changes to device design to help mitigate identified risks, and (4) useful inputs to other 
analyses in the Requirements Phase. Examples of these four categories of results are described below.  

• Areas requiring further specialist analysis: In response to risks associated with the connection 
between the pump tree and the device (for example: another device influencing control of the 
pump, or the control device connecting to a different pump than the one intended, etc.), a 
need for further specialist security analysis looking at general security requirements of the 
Ethernet connection, as well as encryption options was identified.  

• Areas requiring further combined analysis: Among inter-attribute concerns, a trade-off was 
noted involving user authentication. To enhance security of the device, some form of 
authentication (e.g. a pin/card) is likely required for important changes to the device’s 
parameters (e.g. blood pressure target). However, this authentication must also allow the user 
to operate the device quickly for efficient care of the patient and must not introduce new 
safety hazards due to delays in decisions/actions. This point raises the need for further 
combined analysis of these trade-offs by security and human factors specialists, and this trade-
off analysis is discussed further in Section 4.3.  

• Changes to design to help mitigate identified risks: Within the steps involved in the set-up of 
the device, several hazards related to incorrect sequence of steps, or missing steps were noted 
(i.e., user forgets to load the syringe, or connection between the pump tree and device was 
not established, etc.). As a potential mitigation to these, RGB has included in their new design 
of the device interface a validation sequence (including a set of mandatory steps and input 
parameters) to aid the user through the various set-up steps and confirm that they have been 
correctly performed before initiating automatic control. 

• Input to other analyses in the Requirements Phase: The HAZOP exercise links to the work of 
other partners in the medical use case. The feared events identified in the HAZOP become 
inputs to the Fault Tree Analysis (FTA), Hazard Analysis and Risk Assessment (HARA) / Threat 
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Analysis and Risk Assessment (TARA), and the cyber risk analysis. These possible combinations 
of methods are shown in Figure 4-1.  

 
Figure 4-1: Link Between HAZOP Analysis and other Analyses by UC2 Partners in the Requirements Phase 

4.1.4 Lessons Learned 
The HAZOP Analysis fulfilled its purpose as a useful method to share the knowledge and expertise of 
different partners, combining multiple perspectives, in the medical use case. Although most partners 
involved had no previous experience of HAZOP, it was productive; no major difficulty was experienced 
and the mixed guidewords seemed effective for the combined analysis of accidental and malicious 
deviations and consequences. In the early Requirements Phase of the medical use case, it successfully 
identified a range of hazards, which served as triggers for changes to the device design and also as 
useful inputs/triggers to additional combined/specialist analyses, run by various partners: (1) All4Tec 
and Tecnalia in developing their combined fault tree analysis, (2) AMT in developing their combined 
Safety HARA and Security TARA described further in Section 4.2, (3) City and Trustport in exploring 
authentication trade-offs described further in Section 4.3 and (4) Trustport in progressing their 
specialist cyber risk analysis.  

There were limitations in this trial application. HAZOP is meant to be a heavily interactive process, so 
working remotely via teleconferences and using an online, shared spreadsheet was a challenge. Some 
stakeholders were also not represented as would be expected in a complete HAZOP analysis; for 
example, RGB was compelled to act as a representative of end-users. Both these observations suggest 
that the technique would be more effective, not less, in the usual industrial environment than it is in 
the environment of the research project. Apart from effectiveness (finding hazards that would not be 
found without this technique), the other objective of HAZOP (or any other structured hazard 
identification technique) is completeness (finding them all); how close a technique gets to 
completeness cannot be tested by a trial on a very limited effort and timescale (and, especially, without 
the ultimate test of system operation to reveal whether essential hazards were left unnoticed and 
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untreated), as imposed by the size of AQUAS. However, we will monitor whether later verification 
steps reveal hazards that were missed by the HAZOP parts performed. 

4.1.5 Further Developments 
The HAZOP analysis of the closed-loop control of blood pressure during a surgical intervention scenario 
is now at a stage that helps demonstrate its usefulness and has provided useful outputs. Currently, 
RGB and UC2 partners are discussing how best to move forward within the AQUAS budget constraints: 
to extend the HAZOP analysis to other scenarios of use, especially in the intensive care unit (ICU), or 
to use AQUAS resources on some of the other analyses currently underway in this use case, especially 
those that have been triggered by the HAZOP analysis.  

The complete HAZOP worksheet is provided in the Annexes (status: project confidential).  

4.2 Combined Hazard Analysis and Threat Assessment Including a Threat 
Identification Based on Assets (Medical Use Case Example) 

Contributor: AMT 

A hazard and risk assessment is a structured and systematic method to identify potential safety 
hazards. Thereby, potential malfunctioning behaviours of a device are considered in a certain usage. 
Depending on the likelihood of that scenario and the severity of the potential hazard, a criticality level 
is determined. This allows later application of appropriate mitigation strategies. In the medical domain, 
standards like ISO14971 define the application of this method. 

Threat Assessment is a method to estimate the credibility and seriousness of a potential threat, as well 
as the likelihood that the threat will happen. This implies the identification of the threats. 

An exercise for a combined hazard and threat analysis including a threat identification based on assets 
modelled in SysML was applied to the Requirements Phase in the medical use case (Use Case 2). UC2 
concerns the extension of an existing device for monitoring blood pressure and neuromuscular 
transmission to make it able to control an infusion pump and perform closed-loop control of these 
physiological parameters [Deliverable 2.2]. 

The analysis was based on the same example that was chosen for the HAZOP analysis in Section 4.1. 
Additionally, the results of that analysis were used as an input for the threat assessment.  

4.2.1 Aim 
A key aim of the combined analysis and assessment of hazards and threats is to identify them and to 
estimate their criticality. At the same time, it helps to expose the relations between threats and 
hazards to emphasize those threats that potentially lead to safety hazards. Thereby tool-based 
automated threat derivation from a design model provides a systematic way to find new threats which 
can then be assessed in a threat assessment. 

4.2.2 Method 
The tool medini analyze, which is dedicated to performing analyses in the area of functional safety and 
cybersecurity, was first applied to perform a hazard analysis based on the high-level function of UC2, 
namely, to inject a medication to control a patient’s blood pressure. This function was modelled in 
medini analyze: 
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Figure 4-2: Initiating a new function in medini analyze 

The required malfunctioning behavior of that function as an input for the hazard analysis was modelled 
as a set of malfunctions that are found by performing the medini analyze built-in HAZOP analysis: 

 
Figure 4-3: Applying HAZOP analysis in medini analyze 

Here the table editor shows in the columns the guide words to be applied to the function in the rows. 
The intersecting cells can be used to define the malfunctions that match the guide word in the context 
of the function. 

While in Section 4.1 HAZOP was applied on a process view of UC2, here the HAZOP is used on a 
functional view of the system. In the process view the guide words help to identify deviations from the 
intended sequence of steps in the process whereas in the functional view the guide words support the 
derivation of malfunctioning behavior of the analyzed function. As shown later in this Section, medini 
analyze as a model-based tool could have been used too to execute a HAZOP on the process view of a 
system. 

The found malfunctions are then input for the hazard analysis whereby medini analyze allows filling 
the lines in the HARA table either manually or automatically by permutationally combining the set of 
malfunctions with a list of operation modes. 
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Figure 4-4: Identifying malfunctions in medini analyze 

For the threat assessment, again medini analyze is used. In order to come up with an initial set of 
threats, the tool allows, in the step of threat identification, the automatic derivation of threats out of 
a SysML model that either describes an architecture of the target of evaluation (TOE) or defines the 
item under consideration on a functional level. The SysML model is used to annotate the artefacts, 
whether they are assets or not, and what security attributes are of interest. 

 
Figure 4-5: Asset Identification in medini analyze 

From the annotated model, threats are derived automatically by creating a threat for every security 
attribute of an asset whereby the security attributes are mapped to a corresponding STRIDE category 
[STRIDE]. 

 
Figure 4-6: Threat derivation from assets 

Triggered by a tool interaction, the derived threats collected in the list are then filled into a threat 
assessment table that allows estimation of their severity according to different fields (e.g. safety, 
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financial, etc.) and their likelihood. The estimation of the corresponding parameters for impact and 
likelihood follows the definition published in the HEAVENS security models [HEAVENS]. 

 

 
Figure 4-7: Threat assessment table in medini analyze 

The Excel-based HAZOP analysis introduced in Section 4.1 and its corresponding annex was imported 
manually into medini analyze and helped identify potential attacks that in turn can cause one of the 
identified threats. The resulting table in medini analyze (see Figure 4-8) also allows tracing of 
malfunctioning behaviour resulting from the hazard analysis as effects of an attack. Here the relation 
between security and safety aspects becomes visible. 

 
Figure 4-8: Imported process HAZOP and derived attacks 
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Figure 4-9: Linking attack scenarios to threats 

4.2.3 Results  
The results of the applied method are a list of safety hazards, threats and attacks and their relation 
between each other in respect to causes and effects. 
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Figure 4-10: Identified hazards, threats, attacks and the relations between them 

The impact that an attack has can be made visible in the relations view of medini analyze. Here it can 
be seen that an attack might lead to a threat and the threat itself could cause some malfunctioning 
behaviour of the device that controls the infusion pump, resulting in one of the serious safety hazards 
ischemia or hemorrhage, depending on the specific malfunction. 

 
Figure 4-11: Relations view in medini analyze 
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4.2.4 Lessons Learned 
The combined Hazard Analysis and Threat Assessment as presented here is a suitable method to 
identify hazards and threats. In particular, the automated derivation of threats based on an 
architecture model, enriched by the possibility to mark certain artefacts in the model as assets with 
corresponding security attributes, enables improved argumentation with respect to the completeness 
of the potential threats that must be assessed. 

Furthermore, it has been proven that the results of the HAZOP analysis described in Section 4.1 were 
a good starting point for further analysis, especially with respect to security. Thus, attacks could easily 
be derived from the deviations that were described there. 

4.3 Combined Analysis of Trade-Offs Regarding User Authentication (Medical 
Use Case Example) 

Contributors: City and Trustport 

This analysis aims at clarifying trade-offs that arise from a novel security requirement. Its intended 
output is a description of the risk associated to each alternative design solution, so that designers can 
choose on a rational basis.  

This is an example of a challenging combined analysis in which (a) security controls meant to preserve 
safety of operation conflict with safety and operation performance goals and (b) users’ attempts to 
preserve safety and performance may impair security. That trade-offs exist is clear, but the analysis 
needs to start with identifying how they arise – the causal chains, complex and possibly including 
loops to be analysed – and choosing what aspects of alternative design solutions need to be presented 
to the system designers for them to be able to make informed decisions. Ideally, one can then translate 
this complex description into quantitative estimates of overall risk associated with each design 
solution. Whether this quantitative description is feasible in practice is to be seen, and if not, the goal 
will be again to assist the system designer with the part of analysis that is feasible.  

This kind of complex trade-off is likely to arise in any safety-critical system with human operators; we 
are applying this analysis in the AQUAS medical use case (UC2). 

UC2 concerns the extension of an existing device for monitoring blood pressure and neuromuscular 
transmission to make it able to control an infusion pump and perform closed-loop control of these 
physiological parameters [Deliverable 2.2]. 

Risks associated with malicious use or unintentional misuse of the closed-loop control infusion pump, 
identified in the HAZOP analysis presented in Section 4.1, raised a need to consider a form of user 
authentication in the UC2. Although authentication aims to reduce security risks related to accidental 
or malicious use of the device, it has negative effects as well: it may be a nuisance to some users, 
especially if repetitively required; may reduce their efficiency by causing delays; and most importantly, 
it may inhibit a clinician’s timely response to patient emergencies, thus posing a safety hazard. These 
considerations imply a need to perform a trade-off analysis.  

The analysis begins by describing various authentication methods (knowledge, token, and biometric-
based) from the different viewpoints (security, performance, usability, cost, and safety). This allows a 
pre-selection of methods; this descriptive work is now being extended to a deeper, and potentially 
quantitative approach. In this use case, we limit this deeper analysis to token-based authentication 
methods, as the preliminary descriptive analysis indicated them as the most promising authentication 
approaches.  
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4.3.1 Aim 
The goal of the analysis is to describe to a system designer the effects on risk of various options for 
authentication (and to explore whether this description is complete enough to turn the problem into 
one of numerical constrained optimisation of a single variable describing risk). The options are not 
limited to matters of technology ("shall I use passwords or RFID badges? Shall I add a second factor for 
authentication, say fingerprints?") but involve system design options about how the system will use 
authentication, as in the following list:  
1. Is authentication required in this medical device, and against what threats/risks? 
2. Is authentication required for all modes of use of the device (operating room (OR) and intensive 

care unit (ICU)), or could certain modes require different levels of authentication strength, due to 
differences in physical security?  

3. Which tasks require authentication? For example, monitoring versus infusion. 
4. How often should a user need to authenticate themselves? For each command they wish to input? 

For whole surgery interventions, or watch shifts? Or periodically? What is an appropriate “grace 
period”?  

5. What is more appropriate, single or multi-factor authentication, and what type of authentication 
is most appropriate?  

6. For the chosen method of authentication, are there policies or design variations that can help 
mitigate the downsides of that choice? For example password policies, or “break-glass” options.  

These questions also require understanding of the system's design constraints (e.g., does the device 
need to have both an "authenticated" and a "non-authenticated" operation mode, so that the setting 
of this mode becomes a critical operation to be protected by authentication?) and intended secondary 
purposes (e.g., ensuring that logs of operation of the device are correctly attributed to the clinicians in 
control, e.g. to support incident analysis in case of adverse events). A first round of conversation about 
these aspects with the use-case owner RGB took place to help weed out some options; it is expected 
that at least one additional iteration will be needed. 

4.3.2 Method 
The analysis begins by brainstorming to identify which specific aspects (of authentication solutions) 
should be analysed. For example, performance of the authentication mechanism is an important 
aspect, but which specific aspects of performance need to be considered (average time to 
authenticate, probability of failure on first attempt, probability of delay long enough to cause patient 
harm, etc.)?  

Following this initial brainstorming of important aspects, a descriptive analysis began. This analysis is 
documented in a worksheet describing the different authentication options, and the associated Cost 
(Development and Maintenance), Usability, Performance, Security, Safety (First-Order Risks and 
Indirect Effects) of each. These descriptions are based on several teleconferences between human 
factors specialists at City, security specialists at Trustport, and the device manufacturers at RGB.  

Equally important was to identify minimum requirements for each of these aspects, to eliminate 
unacceptable options. For example, the time required to input a password is considered too long a 
delay and too disruptive for passwords to be considered a practical authentication option.  

4.3.3 Results 
Below is an example of a single row from the analysis table. The complete worksheet can be found in 
the Annexes (status: project confidential).  
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Table 4-2: Example row from the qualitative trade-off analysis 

 
Some observations about Table 4-2 follow. 

• Some of the authentication solutions (rows), such as password authentication, can be eliminated 
based on the minimum requirements set out under each aspect. This helps simplify the later, 
detailed analysis.  

• One of the solutions compared must be "no authentication": there is no a priori certainty that 
authentication will reduce overall risk. In particular, an authentication mechanism is a desirable 
target for DoS attacks, meant to make the device unavailable.  

• There is a need to consider indirect negative effects. For example, users that find an authentication 
method inconvenient or difficult to use may invent workarounds (such as sharing the token or 
posting it in a visible location) that introduce new hazards or reduce the protection offered by the 
authentication. Such indirect effects are often neglected in SSP analyses, but considering them 
may reveal that the solution considered least risky based on direct effects is actually riskier than 
some alternative6. 

• Each column describes a possibly complex aspect of the design solution: not necessarily a single 
attribute with a single scalar measure. This stage of analysis is about identifying which aspects of 
each aspect need to be considered individually. There is a complex web of different factors all 
interacting with one another. These interactions were further clarified in a dependency diagram. 
This diagram has two main goals: 

1. Identifying a small, and clearly-defined subset of specific aspects to consider in the 
detailed, and potentially quantitative, analysis. 

2. Highlighting dependency chains, especially unexpected ones, that may lead to patient 
harm.  

                                                             

 
6 To give a prominent example, the U.K. National Cyber Security Centre and the U.S. NIST recently 
reversed their long-standing advice on password policies, acknowledging that policies previously 
considered "most secure" (complex passwords, to be changed frequently) caused users to invent 
workarounds that undermined the password-based authentication. 

Authentication

Level/Type of 

Authentication
Potential Tweaks

Description of the 

Factor as well as 

Potential 

Measure(s) that 

May be Used to 

Quantify It

Tweaks that may be 
implemented in combination 
with the authentication 
method and which are usually 
designed to mitigate/address 
some of the risks raised.

Card Reliability and ease of use of 
the card reader (i.e., swipe 
versus contactless) will likely 
affect performance, usability, 
and first-order safety hazards; 
Certain high-priority alarms 
override the need for 
authentication; Use the card 
for other purposes around the 
hospital to improve usability

Ideally takes less than 5 
seconds (for a user carrying 
their card...)

Users may lend their cards 
to others for convenience/ 
speed, especially in an 
emergency

Card reader Printing card for each 
new user; Replacing 
damaged cards

Fairly easy to use; Reliability 
of the card system will likely 
affect usability

Probability of security 
hazards, especially 
unintentional ones, is 
reduced. Exception: malicious 
use can occur if card is stolen.

Exceptions affecting likelihood 
of the risk: User forgets to 
carry their card; User fumbles 
with card/pockets; User 
swipes the card incorrectly; 
Card is damaged; Card reader 
failure

Indirect risks measured as 
probability of the hazard * 
severity of the consequence

Different time measures may 
be considered: average delay 
imposed (in seconds), 
probability of failure on first 
attempt, probability of a large 
enough delay to cause task 
disruption, and/or probability 
of a large enough delay to harm 
the patient. 

Indirect Negative Effects to 

Consider

     Delay to Intervention (if not 

infinite)
Vendor's cost Adopter's Cost Usability

Change to Security Risk 

(Intended)
First-Order Safety Hazards

Cost may be measured in 
hours/pounds and should 
include cost of any required 
hardware as well as 
development cost

Cost may be measured in 
hours/pounds. Adopter 
costs include: Set-up 
costs (ex: training); 
Enrollment time (ex: 
time needed to set up a 
new user account); 
Maintenance costs (ex: 
protecting the database, 
printing cards); and 
Recovery costs (ex: 
replacing 
stolen/damaged card).

Usability is a wide term 
meant to capture factors 
such as: ease of use, 
learnability, frustration, 
acceptability, accessibility, 
convenience, and 
universality.  It may be 
measured on a Likert scale 
based on a survey of 
potential users, or instead 
approximated according to 
other factors and how they 
affect usability (see 
dependency diagram). 

Security risk measured as 
probability of the hazard * 
severity of the consequence. 
For all rows, the main risk 
considered is incorrect 
modification of target 
parameters.  This can cause 
serious harm; severity of the 
risk is unchanged for all rows 
and only the probability 
changes.  All authentication 
levels are also expected to 
improve accountability/ 
traceability not just in case of 
faults, but also for learning 
purposes, etc. 

Safety risk measured as 
probability of the hazard * 
severity of the consequence. 
For all rows, the main risk 
considered is that the patient 
requires emergency 
treatment, which is delayed 
due to authentication.  This 
can cause serious harm; 
severity of the risk is 
unchanged for all rows and 
only the probability changes. 

Cost Usability Security PerformanceSafety SSP
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Figure 4-12 shows the dependency diagram summarizing the various factors in the decision to 
implement authentication and the relationships between them. It represents an incomplete yet 
complex account of how patient harm can be caused.  

 
Figure 4-12: Relationship Between the Various Factors in the Decision to Implement Authentication 

The colours of the shapes represent the category to which they refer: purple for characteristics of the 
authentication method (for example: false accept rate, grace period), peach for security-related factors 
(for example: probability of theft), yellow for costs (for the manufacturer and for the user 
organization), green for performance-related factors (for example: average time required to 
authenticate, probability that time to authenticate exceeds a certain amount), and blue for usability 
issues (for example: ease of use, user frustration). Ovals represent factors that are relatively easy to 
provide as inputs to the analysis, while rectangles represent factors that may not be as easy to estimate 
directly, and can instead be approximated based on the oval inputs. The arrows between the nodes 
indicate causal links. Blue arrows represent an “increase relationship” (an increase in the source node 
factor leads to an increase in the target node factor) while orange arrows represent a “decrease 
relationship” (an increase in the source node factor leads to a decrease in the target node factor). 
Triangles represent potential mitigation strategies: variations to the authentication method to reduce 
the strength of the specific link to which they are attached.  

At the top of the diagram is “patient harm”, which describes all scenarios where there is an increased 
risk of harm to a patient. For example, in the case of the medical device considered in UC2, this node 
represents scenarios including but not limited to: the pump infuses the patient with an incorrect 
dosage, or the patient’s physiological parameters fall outside the target range but go unnoticed by the 
clinician.  

We note in the diagram four input arrows to the “patient harm” node. These represent our four main 
conjectures about how patient harm may be triggered by authentication-related issues (four plausible 
examples out of other possible causes). More specifically: 
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• Malicious Use: an attacker intentionally gains access to the device and makes changes to 
patient care that put the patient at risk of harm. This may be by directly altering the delivery 
of drugs, or by tampering with the alarm functions of the device (e.g. producing excessive false 
alarms for patient conditions, or omitting alarms for exhaustion of drug supply in the pump).  

• Accidental Use: a user unintentionally gains access to the device and unintentionally makes 
changes to patient care that put the patient at risk of harm.  

• False Reject: the authentication method falsely rejects a legitimate user thus preventing them 
from assisting the patient when needed. For example, due to a card reader failure, or because 
the user’s fingers are chapped and yield an error in a fingerprint biometric reading. We note 
that this can be the goal of an attacker.  

• User Concentration: the authentication method negatively impacts the user’s concentration to 
a level that distracts them or affects their ability to respond to an emergency, thus putting the 
patient at risk of harm.  

Some of the important outcomes of this dependency diagram are: 
• Unexpected chains: We note that although mitigation strategies are designed to reduce the 

risk of potential harm to a patient, they may also introduce new causal chains that increase 
this same risk. For example, to reduce theft of an authentication key, an organization may 
enforce stricter protocols. These protocols may reduce the risk of malicious use due to theft 
of the key (i.e., the link between nodes “Malicious use” and “P(Theft of the key)” is interrupted 
by the mitigation “Stricter rules”). However, at the same time we note a number of arrows 
leaving this mitigation strategy (“Stricter rules”) and leading to increased “probability of 
forgetting the key”, increased “probability of intentionally sharing the key”, decreased “ease 
of use”, etc. – all of which can then lead to patient harm through a different chain. 
As another example, to reduce the risk linked to illicit duplication of authentication cards, a 
hospital could require that cards be renewed monthly, but this would increase the risk of a 
clinician trying to use an expired card, hence risk to the patient. 

• Reduction of inputs required for a detailed/quantitative analysis: Usability factors such as user 
frustration, user acceptability, ease of use etc. are relatively difficult measures to quantify (one 
can define measures for them, but quantifying the effects of their parent nodes on them and 
of them on their child nodes would be hard), but the diagram suggests that other factors, 
relatively easier to quantify (such as performance measures or estimated costs) might be 
suitable proxies – this simplifies and reduces the required inputs to a detailed/quantitative 
analysis.  

• Clarification of aspects: The preliminary descriptive analysis presented in Table 4-2 contains 
broad, general categories, which require further clarification and definition in order to analyse 
at a deeper level. For example, what is called “usability” in Table 4-2 was divided in Figure 4-12 
into: ease of use, user concentration, user frustration, acceptability, and 
traceability/accountability. These sub-categories are closely related (thus all arrows between 
them have been removed for simplicity), but still useful to clarify what aspects of usability are 
being considered.  

We are also working on a deeper analysis from the security viewpoint. Here, rather than speaking only 
about security of the device in a general sense, security has been broken down into specific threats. 
For each threat, the likelihood is considered. A preliminary detailed analysis is sketched in Table 4-3, 
limited to the most promising methods identified via the preliminary descriptive analysis and minimum 
requirements described in Table 4-2. These are two token-based methods: RFID and magnetic stripe.  

The estimated likelihoods in the table are a first-cut high-level evaluation. The likelihoods have three 
different levels: Possible (Red and Amber) and Not Possible (Brown). "Red" (or "Yes") means that there 
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is an obvious reason for thinking that the specific attack will be possible. On the other hand, "Brown 
(No) means that there are technical or other obvious reasons why this specific attack is not possible 
for the selected technology. Last, "Amber" ("May") stands for possibilities, where we closer 
investigation is required as simple high-level evaluation does not give a justified result "yes” or ”no". 

Table 4-3: Outline analysis of security viewpoint – likelihood of various threats 

 RFID Magnetic stripe card 

Social engineering methods Possible 
E.g. the attacker can borrow the card 

Possible 
E.g. the attacker can borrow the card 

Types to be assessed: phishing, spear, pretexting, scareware, baiting 
Malware Possible 

High skill attack, mostly necessary to 
combine with theft 

Not possible 

Types to be assessed: adware, bot, bug, ransomware, rootkit, spyware, Trojan horse, 
virus, worm, keylogger 

Guessing Not possible 
 

Possible 
Necessary to combine with other theft 

Types to be assessed: brute force, dictionary, rainbow 
MITM Possible 

Due to radio frequency, fully hidden, 
remote 

Possible 
Necessary to install malicious HW in the 

reader 
Types to be assessed: replay attacks, eavesdropping attacks, reflection attack, OTP 
interception 

Server-side attacks Possible Not possible 

Shoulder surfing Not possible Not possible 

Theft of Authenticator Possible 
due to use of physical token 

Possible 
due to use of physical token 

 

4.3.4 Lessons Learned 
The aim of this trade-off analysis is to help system designers (of a medical device, in this case) to decide 
on an appropriate authentication method for their device by considering the decision from all 
viewpoints. This goal has not yet been reached. However, the work done so far, besides demonstrating 
the complexity of the issue, highlights a number of lessons: 

• The importance of clearly identifying the aspects that are part of the decision, at an early stage. 
• The danger of introducing mitigation strategies “in isolation” without considering their effects 

from all viewpoints, as these effects may introduce new hazards.  
• Hence, the importance of taking a holistic approach to the decision that considers all 

viewpoints. 

4.3.5 Further Developments 
This trade-off analysis remains under development. We have documented the steps completed thus 
far. Ultimately, we would like to describe the authentication trade-off as an optimization problem. 
Certain design parameters can be tuned; for example, grace periods (how long a user can keep working 
despite failing authentication) or frequency of authentication requests are relevant inputs to this 
analysis and may reveal how certain values can sway the choice of authentication. To achieve this, 
more detailed analysis of the different viewpoints is underway, with considerations of how factors in 
the decision may be quantified.  
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It is certain that the overall risk will depend on the attack modes likely to be prevalent. Without any 
attackers, the only risk reduction gained from authentication is to prevent accidental inputs, while the 
risk is increased by the possibility of improperly denied access. Scenarios with different dominant 
attacks, e.g., attempts to input harmful command to specific patients vs attempts to harm patients at 
random via denial of service, will bring different optimal solutions. So, system designers will need 
assumptions (tentative predictions) on the threat environments; or, more likely, tunable 
authentication options, with their additional security and safety concerns. 

4.3.6 Further Details 
The Annexes contain a copy of the complete worksheet documenting the descriptive analysis partially 
presented in Table 4-2. 

4.4 Probabilistic Analysis of Performance-Security Trade-Offs via SANs (ATM 
Use Case Example) 

Contributor: City 

This section presents an example of a combined analysis of safety and security of a simplified version 
of the ATM demonstrator. The analysis relies on a probabilistic model, which is built using the 
formalism of “stochastic activity networks” (SAN). SAN is a generalisation of the Stochastic Petri Nets 
formalism. The model has been built and solved using the software tool Mobius, developed and 
maintained by the University of Illinois at Urbana-Champaign (https://www.perform.illinois.edu/). 

The architecture of the demonstrator is described in detail in deliverable D2.3.1. We demonstrate the 
combined analysis on a part of the demonstrator, the middleware used for communication between 
the drones and the ground services. The middleware uses an implementation of the DDS specification 
(Data Distribution Service). The model includes: i) an implementation of the middleware, ii) models of 
the drones, i.e. Unmanned Aerial Vehicles (UAVs), which generate legitimate traffic around a number 
of topics, and iii) additional sources of traffic, e.g. different other applications that may share DDS with 
the ATM infrastructure. 

The model also includes models of various malicious activities applied to the middleware and which 
may generate malicious traffic, e.g. by increasing the number of new topics, and/or associated data 
samples, with their publishers and subscribers, and alter the number of publishers/subscribers of 
legitimate topics. A key idea that we explore in the analysis is that the load on the middleware affects 
the response time in delivery of all messages, an effect which has been studied, e.g. [Bellavista] with 
different implementations of the DDS specification. In the model, the load generated by the publishers 
and subscribers is “recorded”, which in turn affects the response time to any message sent over the 
middleware.  

The number of messages served by the middleware at any moment will vary. Some of the variations 
are intrinsic, e.g. due to overlaps in message delivery times, which is bounded for a fixed number of 
topics of well-known structure, defined in the middleware.  

When the system is under attack, however, the number of topics can increase uncontrollably as 
malicious agents may create new topics. The size of the exchanged data (payload) is also unknown.  
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4.4.1 Aim 
The aim of the study is to explore the scale of the problem that can be caused by maliciously created 
traffic and also how these adverse effects can be limited by adding generic security controls such as 
periodically cleansing the middleware from malicious topics.  

A measure of interest in the studies is the probability distribution of the message response times 
(PDMRT) for the legitimate messages under different regimes of operation of the middleware. This 
distribution will allow us to establish whether the message response time exceeds the hard real time 
constraint of 2 seconds defined as an essential requirement for the ATM systems and, if so, the 
likelihood of this for a particular regime of operation. Note that violation of the hard-real time 
constraint may have safety implications: the drone may become uncontrollable and eventually may be 
either lost or may collide with other drones or even planes. Thus, the analysis may also be seen as a 
special form of combined safety and security analysis.  

The study also includes a comparison of the PDMRT of the “base line” case (when the system operates 
in a “trusted environment” without attacks) with the cases when the system is subjected to attacks of 
different intensities. Another aim of the study is to look at the effectiveness of additional “security 
controls”, e.g. applying an implementation of OMG DDS Security specification 
(https://www.omg.org/spec/DDS-SECURITY/About-DDS-SECURITY/), which apart from the obvious 
benefits in terms of data integrity, etc. introduces additional computational overheads and may lead 
to additional message delays.  

4.4.2 Method 
A model-based method of analysis is used. We develop a SAN model of the system under study, which 
contains a number of parameters. Some of these parameters will define the size of the system, e.g. 
the number of legitimate topics, the (average) number of publishers and subscribers, the size of the 
payload, etc.  

Other parameters model the conditions of operation, e.g. the intensity of the attacks, the effects that 
they can have (e.g. the number of additional topics that a successful attack can lead to and the 
parameters of each of these additional topics – publishers, subscribers and payload size). Finally, some 
of the parameters will characterise the “security controls”. For instance, if “cleansing” of middleware 
is used as a security control, additional model parameters are needed to capture: i) the frequency of 
cleansing, ii) the time needed to cleanse a replica of the middleware, etc.  

The results for each set of model parameters are obtained by solving the respective model using the 
solvers offered by Mobius, e.g. the Monte-Carlo simulator. The results are presented in the form of 
probability distributions of the response time defined for several intervals of message delays: i) 0 – 0.5 
sec, ii) 0.5 – 1 sec, iii) 1 – 1.5 sec, iv) 1.5 – 2 sec, and v) over 2 sec. 

A simulation run will consist of running the system for 5000 sec (i.e. over an hour). During each run, a 
number of messages are sent/delivered. The duration of each message is established and counted 
towards one of the intervals defined above. At the end of the observations, each of the intervals will 
contain the number of messages which occurred during the run which happened to have response 
time within the respective interval. The probability of each interval for the particular run is then 
estimated as the ratio of the number of messages within the interval and the total number of messages 
that occurred during the run. Thus, PDMRT conditional on the particular run is established. The PDMRT 
established for different runs may differ. At the end of a study (with many runs of the model with the 
same values of the model parameters) we compute the average PDMRT, i.e. the probability of each 
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interval, with the respective confidence. It is this PDMRT “on average” that is used to compare the 
different operational regimes.  

4.4.2.1 The model 
The model used in the studies is shown below in Figure 4-13.  

This is a “composed” model, which includes a number of “atomic” models (shown in black).  

In the Annex, we provide further details on the atomic models, the load model, which is the essence 
of the combined analysis, and a detailed description of the model parameters and the values assigned 
to them in different studies.  

  

 
Figure 4-13: The SAN “composed” model of the ATM demonstrator.  

4.4.2.2 Model parameterisation 
An essential part of the presented model is the “load model”, which captures the dependence of the 
response time on the load on the middleware. We demonstrate the method using a simple regression 
load model. A credible analysis will require a careful parameterisation. A number of empirical studies 
are currently under way at TrustPort and at City University to construct a valid load model. These initial 
studies are exploratory in nature, and will be made more specific and tailored to the ATM 
demonstrator so that the respective results are fully usable. The initial results from this work are given 
in the Annex. 
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4.4.3 Results 
Some of the results obtained with the model are presented below in Table 4-4.  

Table 4-4: Probability distribution of the message delivery times (PDMRT) 

Experiment Measure Taken at: [0-0.5] 
secs 

[0.5-1.0] 
secs 

[1.0-1.5] 
secs 

[1.5-2.0] 
secs 

[> 2] secs 

 

 

 

 

 

Experiment 1 

Mean 1000 0.0E+00 0.376 0.469 0.784 0.216 

Conf. interval 0.0E+00 0.0403 0.0398 0.0242 0.0242 

Mean 2000 0.0E+00 0.386 0.592 0.788 0.212 

Conf. interval 0.0E+00 0.0264 0.0259 0.0174 0.0174 

Mean 3000 0.0E+00 0.404 0.6396 0.790 0.210 

Conf. interval 0.0E+00 0.0229 0.0200 0.0125 0.0125 

Mean 4000 0.0E+00 0.413 0.6607 0.7901 0.209 

Conf. interval 0.0E+00 0.0208 0.0162 0.0109 0.0109 

Mean 5000 0.0E+00 0.405 0.613 0.792 0.208 

Conf. interval 0.0E+00 0.0173 0.0139 0.0094 0.0094 

Each experiment for a given parameterisation was repeated 50 times (“Monte Carlo simulation runs”). 
Each run lasted 5000 seconds of system operation. For each of the experiments we estimated the 
“average” message response time and the PDMRT at predefined points of simulation time: 1000, 2000, 
3000, 4000 and 5000 seconds.  

Table 4-4 presents the PDMRT in the form of a cumulative distribution function for one of the 
experiments. The mean message response time and a fuller description of the results illustrated in the 
table can be found in the Annex. 

The results are grouped by the averages of the cumulative probability for the selected time intervals 
[0…0.5], [0.5..1.0], [1.0..1.5], [1.5..2.0]. The tail of the distribution, i.e. the probability that the delay is 
longer than 2 seconds, is shown under the heading “[> 2] secs”. For this experiment, this value indicates 
that the probability of a message delay exceeding the acceptable delay (of 2 seconds) is more than 
20%. A figure of this magnitude is unlikely to be acceptable. 
 

4.4.4 Lessons Learned 
The lessons learned from this method of analysis can be divided into two groups:  

- Building the model event for a relatively small group of attacks required non-trivial effort, which 
suggests that an effort to automate the analysis models will bring about significant benefits. This 
lesson reinforces the importance of the on-going collaboration between City and Intecs to derive 
a SAN model from a system model developed in CHESS. Even a partial success here will drastically 
reduce the effort required to construt a SAN model. 

- The Monte-Carlo execution time is significant. The decision to show results from only 50 
repetitions of each experiment was dictated in part by the long simulation time needed to 
complete a simulation run. In another similar study that we have conducted (related to the 
Industrial Drive use case), a simulation run is much faster (see Section 4.5 for further details). The 
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difference is due to the chosen level of abstraction. Performance (response/delay times related to 
individual messages) requires models in which individual messages sent via the middleware are 
explicitly represented. Modelling even a short system operation implies a very large number of 
messages being sent. Thus, it is the nature of the problem which leads to long simulation time.  

4.4.5 Further Developments 
The model presented in this chapter focuses on attacks on middleware. Although the model includes 
placeholders for attacks on the individual UAV, these are yet to be developed and added to the model. 
We envisage attacks on the communication channel(s) between the UAVs and the ground stations, 
which may include common threats such as DoS, etc. These aspects of the models will be developed 
in our future work. 

Of particular interest is to study the impact of adding “DDS security” to the middleware. DDS Security 
is a specification, complementing the DDS specification, and implementations of the DDS Security 
specification are provided by several vendors. The model will allow us to examine the trade-offs 
involved in adding DDS Security: on the one hand DDS security may make some attacks of middleware 
more difficult; on the other hand adding DDS security is likely to introduce further message delays, 
which may increase the likelihood of violating the threshold for message delays of 2 sec. The current 
model already contains the essential parts which will allow us to study the trade-off – the probability 
of successful attack (attackSuccessRate) and the additional delays of a message (Start_Delay) – due to 
encryption. The missing parts which will make the comparison possible are the load models for the 
two cases: middleware without DDS Security and middleware with DDS Security. The empirical work 
summarised above on model parameterisation will allow us to construct credible load models and 
undertake the outlined trade-off analysis.  

A related strand of work has been initiated at BUT after a technical meeting between City, TrustPort 
and BUT to look at vulnerabilities in several popular implementations of DDS. The focus of this work is 
to establish vulnerabilities in different implementations of the DDS specification, which allow a 
malicious agent to launch attacks on specific DDS implementations. We consider known vulnerabilities, 
e.g. published in the public vulnerability databases such as NVD - https://nvd.nist.gov/, CVE - 
https://cve.mitre.org/, etc. but which may not be patched in the available implementations of the DDS 
specification, or unknown vulnerabilities, e.g. established via fuzzing or using some other methods of 
searching for vulnerabilities in a chosen implementation.  

This work on vulnerabilities of DDS implementations is ongoing and we expect some tangible results 
in the future, which will help build a useful model of the entire demonstrator. 

4.4.6 Further Details 
A fuller version of the study is presented in the Annexes. In addition, we provide a complete 
documentation of the presented model which includes a full account of the completed studies with 
the probability distributions related to the different modes of operation. 

4.5 Analysis of Safety-Security-Performance Trade-Offs via SANs (Industrial 
Drive Use Case Example) 

Contributor: City 
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This section presents an example of a combined analysis of safety and security of a simplified version 
of the Industrial Drive demonstrator. The analysis, similarly to Section 4.4, relies on the “stochastic 
activity networks” (SAN) formalism.  

The Industrial Drive is a demonstrator with distributed architecture – a remote “client” application is 
used to send commands to, and retrieve the status of an industrial motor from, a “server” application. 
The actual control is achieved by the server application and dedicated hardware. A detailed description 
of the architecture of the demonstrator is presented in AQUAS deliverable D2.3.4.  

The part of the demonstrator used in the combined analysis includes a model of i) the client 
application, ii) the server application, and iii) a “safety function” to guarantee that should the control 
motor deviate from its safe operation, the safety function will bring the entire system to a safe state.  

The model of the server application is a model of several sub-systems defined in the prototype – the 
server (which passes the data received from the client via shared memory for further processing by 
the dedicated parts of control), the control (computing the values to be passed to the dedicated 
hardware board), and the communication of the board with the motor.  

In the model the client and the server applications are assumed implemented without redundancy, 
which is typically used to improve reliability and availability. For the safety function, however, we 
assume that two channels are used which implement a 1-out-of-2 architecture. That is, each of the 
channels on its own is sufficient to bring the system to a safe state should either the client or the server 
applications, or both, fail.  

In the model we assume that each of the two applications (client or server) either work correctly or 
may fail. The model concentrates on software failures. The failures due to hardware faults are implicitly 
excluded from the analysis. We assume that the safety functions may fail in two different ways: 

- Failing to detect a failure of the client/server application, provided these have failed (i.e. send 
incorrect control value to the motor) – false negative.  

- Spurious false alarm – i.e. flagging the operation of the system as incorrect while in fact both 
the server and the client are working correctly.  

Probabilistic parameters are used to characterise the behaviour of the applications such as failure rate 
and repair rate to characterise the transitions between failure and repair of the client and the server 
applications.  

Similarly, we use probabilistic parameters to characterise the behaviour of the two channels of the 
safety function. These parameters are: 

- Probability to detect a failure of the system when such failure occurs (“coverage”).  
- Rate of spurious alarm when the system works correctly. The model of spurious (false) attacks 

is somewhat more complicated and in fact includes two parameters – rate of occurrence of a 
false alarm and a probability of detecting the false alarm when it occurs. In other words, the 
model assumes some form of self-checking capability for the false alarms.  

Since two channels are used for the safety function, it is important to include in the model the 
possibility of simultaneous, i.e. common cause/mode failures of the two channels. We model explicitly 
the occurrence of simultaneous failures of the two safety channels to detect a failure elsewhere in the 
system and of a false alarm, which rely on a few probabilistic parameters. 

The 2-channel safety function can be in one of the following 4 states: 

- The system is OK. This is when the client, the server and both safety channels work correctly.  
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- The system is in a safe failure state when there is a failure of either the client or the server, 
but at least one of the safety channels detects the failure correctly. We assume that in this 
case the safety function will carry out the necessary steps so that the industrial drive is brought 
to a safe system state (e.g. stop the motor) 

- A false alarm occurs when the client and the server application are OK, but at least one of the 
safety channels flags the state as a failure. In this case the system will be driven to a safe state, 
but this will be unnecessary. False alarms compromise availability of the industrial drive. A high 
rate of false alarms, although not dangerous, is clearly undesirable.  

- Unsafe failure occurs when either the client or the server applications (or both) have failed 
and both safety channels fail to detect the failure. This is a dangerous situation and reducing 
its likelihood to an acceptably low level is the primary safety concern.  

In the model we consider two types of attacks, which are recognised as important in D2.3.4, namely:  

- an attack on the client application. Should an attack on the client application succeed, the 
client application is considered to be in a “compromised” state. The failure rate from the 
“compromised” state to the failed state of the client is assumed to be typically greater than 
the rate of failure of the client from the OK state. The rationale for such a model has been 
extensively discussed elsewhere, e.g. [Popov, 2017].  

- an attack on the safety function(s). The successful attacks of this kind result in changing the 
“coverage” of a safety channel, i.e. the probability to detect a failure, provided there is a failure 
somewhere in the systems (client, server or both), or changing the rate of occurrence of false 
alarms by the respective channel. A similar model of consequences of an attack was developed 
elsewhere, e.g. [Popov, 2015]. 

4.5.1 Aim 
The aim of the study is to demonstrate a method of modelling, which allows one to analyse the safety 
of the industrial drive under attacks.  

The model includes a model of “prevention”, i.e. models the measures taken by the developers of the 
industrial drive demonstrator to reduce the likelihood of successful attacks and the effects of generic 
security controls such as “proactive recovery” [Sousa], which minimise the harm caused to the safety 
of the system should some of the attacks succeed.  

The model is based on the assumption that the modelled system works on a “mission” of a given 
duration, say 1000 hours of system operation. We simulate a large number of missions, say up to 
100,000, and for each of the missions we record the mission outcome as follows:  

- The entire mission is completed successfully (i.e. the system remains in an OK state throughout 
the mission) and no anomaly occurs;  

- A detected failure occurs before the end of the mission. In this case the mission is aborted 
immediately, i.e. before the 1000 hours of the particular simulation have elapsed;  

- A false alarm is raised before the end of the mission and the mission is aborted;  
- An unsafe failure occurs before the end of the mission and the mission is aborted. 

Our aim with the analysis is to establish the probabilities of the 4 outcomes listed above for a randomly 
chosen mission. The main concern in the analysis is, of course, the probability of unsafe failure, but the 
probabilities of safe failure and especially the probability of false alarms are also of interest as these 
lead to reduced availability of the industrial drive. 
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We look at a range of models to establish the impact of attacks on the probabilities of interest listed 
above. These models share the same structure (i.e. consist of the same modelling elements and 
relationships), but are parameterised differently to capture different circumstances, for which we 
would like to analyse system behaviour. Some of the parameters used in the model reflect the 
presence or absence of security controls. Some other parameters reflect the intensity of the attacks, 
the likelihood that they will succeed, etc. A full account of the parameters and their purpose are 
provided below.  

The model includes security controls, such as “cleansing” [Arsenault] of software components which 
might have been compromised by an attack. The frequency of such cleansing is a design choice that 
the designers should make. Our model offers help with such decisions. It allows one “to see” how 
efficiency of cleansing as a countermeasure against successful attacks changes when the cleansing 
frequency is increased - this allows for decisions to be taken rationally.  

4.5.2 Method 
The method used in the study is based on comparing the results from models with different values of 
the modelling parameters. Each parametrisation corresponds to a credible system design. Solving each 
of the models provides insight about the likely behaviour of the system with different designs. The 
models are “solved” via Monte-Carlo simulation. The results are the estimates of the 4 probabilities, 
defined above, for a mission of fixed length. These probabilities are different for the different model 
parameterisations. The model results would inform design decisions about which design should be 
adopted.  

Somewhat arbitrarily we chose a mission time of 1000 hours (~ 40 days), and provide estimates for the 
probabilities of interest at intervals of 100 hours: 100, 200, etc., which allow one to see how the 
probabilities of interest evolve with the mission length.  

4.5.2.1 The model 
First, we describe the model and provide a brief description of the different modelling decisions. The 
structure of the model is shown in Figure 4-14.  

 
Figure 4-14: The SAN “composed” model of the “industrial drive” demonstrator.  

In the Annexes we provide further details on the atomic models, how attacks affect system behaviour, 
and a detailed description of the model parameters and the values assigned to them in different 
studies. 
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4.5.3 Results 
An illustration of the benefits from the method is presented below. Fuller description of the conducted 
studies and of the observations are presented in the Annexes.  

4.5.3.1 Sensitivity analysis 
Let us look at how modelling parameters affect the model behaviour. For instance, let us consider the 
case of attacks on the client application only (assume that the attacks on the safety functions are 
“impossible”). We would like to find out how the frequency of cleansing the client application (e.g. 
rebooting it from a clean, uncompromised copy) will affect the model behaviour. Table 4-5 shows the 
results from several studies in which the period of cleansing is varied: 1 hour, 10 hours, 100 hours and 
1000 hours. 

Table 4-5: Sensitivity analysis results of the effect of cleansing interval on model behaviour with client only attacks. 
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100 

Mean value 7.00E-01 4.87E-01 1.65E-01 1.65E-01 
Conf. interval 5.10E-03 9.34E-03 2.30E-03 2.30E-03 

 
500 

Mean value 1.94E-01 1.27E-01 1.31E-03 1.00E-05 
Conf. interval 4.40E-03 6.23E-03 2.24E-04 1.96E-05 

 
900 

Mean value 5.34E-02 3.60E-02 3.50E-04 0.00E+00 
Conf. interval 2.50E-03 3.48E-03 1.16E-04 0.00E+00 

Pr
ob

ab
ili

ty
 o

f 
Fa

lse
 A

la
rm

 (F
A)

 

 
100 

Mean value 1.65E-01 1.38E-01 1.06E-01 1.05E-01 
Conf. interval 4.13E-03 6.45E-03 1.91E-03 1.90E-03 

 
500 

Mean value 4.85E-01 3.46E-01 1.22E-01 1.20E-01 
Conf. interval 5.56E-03 8.89E-03 2.03E-03 2.01E-03 
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Mean value 5.74E-01 4.06E-01 1.22E-01 1.20E-01 
Conf. interval 5.50E-03 9.18E-03 2.03E-03 2.01E-03 
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100 

Mean value 1.22E-01 3.40E-01 6.57E-01 6.57E-01 
Conf. interval 3.65E-03 8.85E-03 2.94E-03 2.94E-03 

 
500 

Mean value 2.90E-01 4.80E-01 7.90E-01 7.93E-01 
Conf. interval 5.05E-03 9.34E-03 2.53E-03 2.51E-03 

 
900 

Mean value 3.37E-01 5.08E-01 7.90E-01 7.93E-01 
Conf. interval 5.26E-03 9.34E-03 2.52E-03 2.51E-03 
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100 
Mean value 1.23E-02 3.48E-02 7.23E-02 7.24E-02 
Conf. interval 1.23E-03 3.43E-03 1.61E-03 1.61E-03 

 
500 

Mean value 3.04E-02 4.72E-02 8.72E-02 8.76E-02 
Conf. interval 1.91E-03 3.96E-03 1.75E-03 1.75E-03 

 
900 

Mean value 3.55E-02 5.01E-02 8.72E-02 8.76E-02 
Conf. interval 2.06E-03 4.08E-03 1.75E-03 1.75E-03 

Increasing the intervals of cleansing has detrimental effects on model behaviour: the probability of 
surviving a mission decreases while the probabilities of all anomalies go up. While this is not surprising, 
the insight that the model brings is the magnitude of the effect, which may be useful in making a 
decision about what interval of cleansing to deploy in the demonstrator. 
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4.5.3.2 A discussion  
The Results presented in the section above (and detailed further in the Annexes) indicate that the 
effects of the 2 types of attacks may have noticeable consequences. The effect of a successful attack 
on a client application is not surprising. The attacks on the safety function offer some interesting 
observations. If the integrity of the safety function is compromised, the negative effects may be very 
dramatic. The increased probability of unsafe failure may easily invalidate any safety case claimed for 
“trusted environment”. Even unlikely attacks may increase the probability of unsafe failure 
significantly.  

In the Annexes, we present results related to false alarms, caused by attacks on the safety function 
channels. These are particularly unpleasant. Even if one can design very good safety functions and 
practically eliminate the false alarms in trusted environment, the effort may become futile due to 
carefully crafted attacks on the safety functions. It seems that in these circumstances “cleansing” is 
particularly desirable as a control to counter the effects of cyber-attacks.  

4.5.4 Lessons Learned 
The lessons from applying this method of combined analysis are yet to be learned via detailed scrutiny 
of the findings included in this study. By design this method operates at a high level of abstraction and 
many implementation details have so far been ignored or resolved in a way that allows for solving the 
model fast. For instance, instead of modelling the individual commands exchanged between the client 
and the server applications, which would make a solution via Monte Carlo simulation time consuming, 
the model concentrates on the essential anomalous events that may occur in operation – failures, 
successful attacks and resuming normal operation. With the chosen measures of interest (the four 
probabilities for a randomly chosen mission), the model behaviour after an anomalous event occurs 
(system failure or false alarm) is discarded. Should a different measure of interest be chosen, however, 
e.g. the interval between unsafe failures (within a mission) or something else, abandoning the mission 
after the first anomalous event may need to be revisited, which in turn may lead to much longer 
simulation time.  

4.5.5 Further Developments 
The model currently only covers a fraction of the use case – the client application, the server 
application and the safety functions. These are modelled at a relatively high level of abstraction 
ignoring i) the specifics of the design choices made by the developers of the demonstrator, and ii) some 
important implementation details of the security controls included in the model. For instance, 
“cleansing” is modelled simplistically assuming that it can be executed “instantaneously” in a single 
atomic operation which does not affect availability of functional blocks that are subjected to cleansing. 
This assumption seems quite plausible for cleansing the safety functions, especially if cleansing can be 
achieved by overwriting the values of a few variables held in an SD card. Cleansing the client 
application, however, is likely to require a significantly longer time, e.g. to reinstall/restore it on the 
remote computer. During such “cleansing” the client application will simply be non-operational and 
must be designed to allow for cleansing, e.g. during the periods of maintenance. If high availability is 
required (especially in the case of a manufacturing line expected to operate 24x7), the design of the 
client application must include redundancy, too: the cleansing will then follow the suggestions made 
by many to use “intrusion-tolerant” designs. In such cases the models of client application will have to 
be extended and will follow our previous work [Popov, 2017].  

The current model includes some rudimentary elements of performance penalty due to successful 
attacks, but this is an area for significant improvement in the future so that the analysis includes 
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assessment of the probability of violating the duration of the control loop of 62.5 μs, either due to 
accidental or malicious events.  

Finally, the model does not include all attacks envisaged in the demonstrator (see AQUAS deliverable 
D2.3.4), including the work previously done in the SESAMO project by the City team on triplicated 
communications between the sensors of the motor and the controller.  

In the next period of the project the model will be extended to include the essential functional blocks 
and all attack types envisaged in the demonstrator.  

4.5.6 Further Details on the Model  
Full details of the SAN model, the conducted studies and of the results obtained with the model to 
date are included in the Annexesto this section.  

4.6 Combined Analysis of Safety and Performance to Support Design Space 
Exploration and Technical Solutions Comparison (Space Use Case Example) 

Contributor: Univaq 

The proposed method combines performance, safety and (possible) security analysis at a system-level 
of abstraction, considering schedulability and possible isolation alternatives. The utility of the 
approach is explored by analysis of safety/performance trade-offs in the space multi-core use case 
(UC5). It is also proposed to reuse the approach in the ATM use case (UC1). 

The method involves the use of the Hepsycode methodology and framework [Hepsycode] with respect 
to performance analysis, while taking into account safety (fault identification and injection to evaluate 
possible critical paths) and security (impact of cryptography algorithms on performance). The whole 
framework drives the designer from an Electronic System-Level (ESL) behavioral model, with related 
non-functional requirements, including real-time and mixed-criticality ones, to the final HW/SW 
implementation, considering specific HW technologies, scheduling policies and Inter-Process 
Communication (IPC) mechanisms. Through the execution of different steps, including a system-level 
Design Space Exploration (DSE) approach that allows the related co-design methodology to suggest an 
HW/SW partitioning of the application specification and a mapping of the partitioned entities onto an 
automatically defined heterogeneous multi-processor architecture, it is possible to proceed with 
system implementation. 

UC5 involves aerospace application code running on a LEON3 multi-core processor system. Timing and 
code safety analysis are essential to prove that the code can be safely scheduled and run under all 
operating circumstances.  

4.6.1 Aim 
The main goal of this work is to present a combined analysis of performance/safety/security to support 
design space exploration and technology solutions comparison. The main idea is the modelling of a 
space multi-core application as a processes network where processes can communicate with each 
other by means of unidirectional and blocking channels. Such a Model of Computation (MoC) 
guarantees determinism and synchronous communications, allowing a deterministic data flow from 
the input triggers to the final output feedbacks.  

The main problem is related to the analysis of performance/safety/security trade-offs on a multi-
processor system (i.e., an unpredictable disrupted system where interferences are due to HW/SW 
components) considering schedulability and isolation methods.  
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The proposed solution is based on a simulation approach to evaluate safety/performance impact 
considering various HW/SW architectures. A semi-automatic Design Space Exploration (DSE) step 
involves several stages, from the definition of the solution space, the encoding with respect to the 
decision variable space, and the definition of the objective functions to solve a Multi-Objective 
Optimization Problem. 

Starting from several system-level models (i.e., Application Model, Partition Model and Platform 
Model), the DSE exploits a search method that performs the “HW/SW Partitioning, Architecture 
definition and Mapping” (PAM) step, by using a genetic algorithm that allows one to explore the design 
space looking for feasible mapping/architecture items suitable to satisfy imposed constraints 
[Muttillo]. Then, a “Timing HW/SW Co-Simulator” [Ciambrone] considers the suggested 
architecture/mapping items to actually check for timing constraints satisfaction. The whole 
methodology is shown in Figure 4-15.  
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Figure 4-15: Hepsycode Methodology 

4.6.2 Method 
The Hepsycode framework and methodology [Hepsycode] drive the designer from an Electronic 
System-Level (ESL) behavioral model, with related non-functional requirements, to the final HW/SW 
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implementation. In particular, the system behavior modeling language introduced in Hepsycode, 
named HML (HEPSY Modelling Language), is based on the well-known Communicating Sequential 
Processes (CSP) Model of Computation (MoC). Such a MoC allows modelling of the behavior of the 
system as a network of processes communicating through unidirectional synchronous channels. By 
means of HML, it is possible to specify the System Behavior Model (SBM), an executable model of the 
system behaviour, a set of Non Functional Constraints (NFC) and a set of Reference Inputs (RI) to be 
used for simulation-based activities. Through the execution of several steps, including metrics 
evaluation and estimation activities and a system-level Design Space Exploration (DSE) approach that 
allows the related co-design methodology to suggest a HW/SW partitioning of the application 
specification and a mapping of the partitioned entities onto an automatically defined heterogeneous 
multi-processor architecture, it is possible to proceed with system implementation. Hepsycode uses 
Eclipse MDE technologies, an extension of the standard SystemC simulator and an evolutionary genetic 
algorithm for partitioning/mapping activities, all integrated into a (semi)automatic framework that 
drives the designer from a system-level specification to a final solution, considering also Hypervisor-
based SW Partitions in the evolutionary approach and timing HW/SW co-simulation runs. 

So, the HEPSYCODE starting point considers different HW-based, OS-based, and Hypervisor-based 
solutions (both in the research and industrial domains), and uses specific modelling technologies, 
metrics evaluation and estimation activities, and a specific HW/SW co-simulator integrated into the 
Hepsycode Co-Design methodology and framework. Then, it is possible to find suitable sub-optimal 
solutions for the HW/SW partitioning problem by suggesting both the platform and the mapping for 
the specific mixed-criticality and real-time application, exploiting hypervisor-based SW partitions, also 
performing schedulability analysis and final validation activities to guarantee bounded errors. 

4.6.3 Results 
Various activities have taken place during the past months: 

• UC5 modelling activities: starting from a CHESS model, UNIVAQ has adapted the application 
scenario to the HML. The application is composed of 7 processes (as shown in Figure 4-16), 
each of which matches with a CHESS component.  

 
Figure 4-16: HEPSYCODE Process Network Model 

• The second step has involved the extraction of several metrics by means of simulation 
activities. The considered metrics are: concurrency (i.e., an indication of the extent to which 
the set of process and channel pairs can potentially work concurrently), communication (i.e., 
the amount of data exchanged between process pairs), workload (i.e., processor utilization) 
and real-time behaviour (i.e., estimated WCET). In the context of UC5, some preliminary 
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results show that the channel pairs [stim_scrub_channel, wdog_display_channel] and 
[stim_wdog_channel, tmtc_out_display_channel] are always concurrent, so the process pair 
[MEMORY SCRUB, WDOG] and [WDOG, tmtc_out channels] shouldn’t share the same link. 
With respect to processes: 

o SCRUB is 33% concurrent with WDOG, TMTC_IN and TMTC_OUT 
o WDOG is 66% concurrent with TMTC_IN and TMTC_OUT 
o TMTC_IN and TMTC_OUT are 100% concurrent (it is then possible to consider the 

introduction of a PIPELINE) 
• The possible combined Safety/Security/Performance analyses are related to two different 

scenarios, as shown inFigure 4-17. The first one considers two safety-related subsystems, the 
non-critical subsystem, where the Telemetry/Telecommand application sends satellite 
information to the earth station, and the critical one, related to system monitoring and fault 
detection/avoidance. 

       
Figure 4-17: Hepsycode AQUAS Version 1 (No Security) - LEFT, Hepsycode AQUAS Version 1 (with Security) - RIGHT 

• Starting from these activities, different failure paths can be investigated in order to check 
safety/performance anomalies, as shown in Figure 4-18. Finally, introducing security issues can 
degrade performance and, at the same time, negatively affect system execution, thus affecting 
the overall system safety. 
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Figure 4-18: Hepsycode Performance/Safety Analysis - LEFT, Hepsycode Performance/Safety/Security Analysis - RIGHT 

• The DSE and simulation activities are work-in-progress steps, while the different paths and 
failure scenarios will be evaluated with focus on possible architectural and behavioural 
improvements.  

4.6.4 Lessons Learned 
We have released a framework and related tools that are able to model several applications injecting 
safety/security/performance requirements into the whole design step, with focus on simulation 
activities. The tools are able to extract information related to functional and timing issues, while the 
input model can be used to check possible erroneous/critical behaviours (e.g., deadlock, starvation, 
functional bottlenecks, etc.).  

The Design Space Exploration tries to find possible allocation/binding alternatives, but this is a critical 
issue while the strict safety/security requirements can affect performance, decreasing response and 
execution times. The use of other external tools (i.e. A2K ITI for schedulability analysis, CODEO/PikeOS 
for SW partitioning improvements, CHESS for a Model-to-Model semi-automatic comparison, 
SystemC-TLM for timing simulation) can offer the possibility to decrease design time while improving 
system implementation reliability. Verification and validation activities on a real board environment 
are then needed for different aspect, from methodology refinement to system components 
improvement, while the Design Space Exploration can help designers to guarantee the fulfilment of 
input requirements. The use of Hypervisor technologies (e.g., PikeOS) will guarantee a behaviour 
compliant to certification according to relevant standards, but the qualification of such technologies is 
not easy to obtain.  

4.6.5 Further Developments 
The Hepsycode approach will be extended to the ATM use case (UC1) and collaboration with other 
partners. 

4.6.6 Further Details 
The complete Hepsycode methodology and approach is provided at http://www.hepsycode.com/. 
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4.7 Combined Analysis of Security and Performance to Support the Product 
Lifecycle using SSDLC and TTool (Industrial Drive Use Case Example) 

Contributors: Trustport and MTTP 

Safety, security and performance are mostly interdependent in the product life cycle management and 
therefore the task is to find a reasonable balance between them. Combined Analysis is based on deep 
analysis to define the security parameters (e.g. encryption, integrity, confidentiality) and security level 
(e.g. key lengths) based on the most current norms, standards, risk analysis, and best practice together 
with the modelling and verification of performance analysis in the TTool toolkit. We demonstrate the 
approach via application to the industrial drive demonstrator (UC4) to assist co-engineering within the 
demonstrator implementation. 

UC4 concerns an Industrial Drive for electric motion control. Within AQUAS, a virtual HW prototype of 
the whole system will be created that shall be used to verify performance constraints together with 
safety and security requirements for a representative set of scenarios. 

With the Software Development Life Cycle Management Tool (SSDLC) the product security 
requirements (based on standard IEC 62443 and best practices) were implemented. This approach 
discovered interconnections between the security requirements (security) and their impact on the final 
system response (performance) during the development stage. 

Combined Analysis of Security and Performance to Support the Product Lifecycle using SSDLC and 
TTool was used to cover the whole product development cycle from security and performance 
requirements point of view. The implementation of requirements in SSDLC and TTool also follows the 
V-model starting from set of requirements continued through design of implementation and 
verification phase. 

4.7.1 Aim 
The goal of this combined analysis is to create a way to establish a compromise between security and 
performance requirements. 

An interaction between security and performance was investigated for potential trade-off decisions 
(which security mechanisms such as encryption can be used under consideration of performance 
resources) by the Combined Analysis and using SSDLC and TTool. 

4.7.2 Method 
Figure 4-19 helps introduce a methodology of combined analysis and an approach to the 
implementation of interaction points in practice. The standard ISA/IEC-62443-3-3 and IEC62443-4-2 
together with NIST 800-82, IEC 27001 and COBIT were implemented into SSDLC. 

We are using an extensive Secure Software Development Life Cycle catalogue containing security 
requirements together with the advanced modelling framework TTool based on UML/SysML-Sec for 
performance analysis. 

For performance analysis, the complexity curve of certain algorithms was calculated. The simple model 
(demonstrator) in TTool was used for verification of combined analysis. Thanks to the security and 
performance modelling and analysis techniques supported by TTool, it was possible to model the 
trade-off between security and performance to support the product life cycle and different security 
levels. 
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Figure 4-19: Combined Analysis of Security and Performance to Support the Product Lifecycle using SSDLC and TTool 

4.7.3 Results 
We provide deep analysis to define the security parameters and security level based on the most 
current norms, standards, risk analysis, and best practice together with the modelling and verification 
of performance analysis in the TTool toolkit. 

 

 

Security level Algorithm for SL Number of cycles 

SL1 AES 128 440 

SL2 AES 256  615 

SL3 AES 512 970 

SL4 AES 1024 1675 
 

 

 

 
Figure 4-20: TTool – results security algorithm vs. performance 

 
Table 4-6: Results - Computation time according to different security levels and algorithms 
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Title Security level Algorithm/Method for SL 
Computation time [µs] for 400 
MHz 

Non-repudiation / 
authentication 

SL1 RSA 1024  3.85 

SL2 ECDSA P-256 TBD 

SL3 ECDSA P-384 TBD 

SL4 RSA 2048 TBD 

Communication 
integrity 

SL1 SHA-1 1.95 

SL2 SHA 224/256 4.39 

SL3 SHA 384 5.54 

SL4 SHA 512 5.54 

Using encryption 

SL1 AES 128 1.09 

SL2 AES 256  1.54 

SL3 AES 512 2.43 

SL4 AES 1024 4.19 
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Table 4-7: Performance in terms of cycles depending on the clock divider 

Master 
clock 

T1/T2 CPU/Bus output Output time 

[MHz] 
Clock 
divider 

Width 
[Bytes] 

Nb of 
samples 

Name Utilization 
 Cont. delay 
on MainBus_0 

Cycles 

200 1 40 1 

CPU2 0.490234 15 

1024 CPU1 0.480469 32.5 

MainBus 0.0195312 - 

200 2 40 1 

CPU2 0.490272 15 

2056 CPU1 0.480545 34.5 

MainBus 0.0233463 - 

200 3 40 1 

CPU2 0.490291 12.8571 

3090 CPU1 0.480583 30.8571 

MainBus 0.0252427 - 

200 4 40 1 

CPU2 0.490348 15 

4144 CPU1 0.480695 37 

MainBus 0.030888 - 

200 5 40 1 

CPU2 0.489856 15 

5126 CPU1 0.480101 34.9 

MainBus 0.0195084 - 

The combined analysis of Security and Performance using SSDLC and TTool was also used for 
Interference Analysis in UC4; see Figure 4-21. 
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Figure 4-21: Inference analysis using SSDLC and TTool 

4.7.4 Lessons Learned 
This approach helps when there is an investigation of whether or not the solution might move to the 
next security level (e.g., because of new regulations or others) without any necessary additive 
implementations or tests. We reveal that each security level (e.g. with higher key sizes) slows down 
the speed (e.g. encryption speed in cycles per byte) by particular exact value. 

More generally, this approach helps to show the relation between each security level independently 
on hardware and implementation. This should serve in the decision processes in PLC phases before 
design or for example after regulation (law) change. It is obvious that it is necessary to think about the 
performance and security parameters already in the early stages of PLC as it might reduce significant 
number of issues caused by insufficient number proposal, which will lead to going back in PLC. 

4.7.5 Further Developments 
The combined analysis will be extended to the other security requirements (e.g. non-repudiation/ 
authentication with The Elliptic Curve Digital Signature Algorithm (ECDSA) or different key sizes), which 
significantly influence the performance (e.g. delay for emergency stop). 
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4.8 Failure Modes, Vulnerabilities and Effect Analysis (FMVEA) (Industrial Drive 
Use Case Example) 

Contributor: AIT 

The proposed method uses Failure Modes and Effects Analysis (FMVEA) for combined analysis of safety 
and security at the concept phase. The approach is illustrated via application to the industrial drive use 
case (UC4). 

FMVEA was devised as a security extension of the well-introduced safety-related analysis method 
FMEA (Failure Modes and Effects Analysis). The FMVEA tool has been developed as a research 
prototype in previous projects and now supports automated safety and security analysis by applying 
rules to a model of the system or specific component under consideration.  

4.8.1 Aim 
The goal of FMVEA is to provide an integrated analysis method comprising safety and security. The 
tool prototype, whose application is planned in UC4, enables a high degree of automation and reuse. 
A functional model of the item under consideration (system, subsystem, component) is imported or 
created, and enhanced with dependability attributes. Based on a previously created database of safety, 
security, and performance rules, an automated co-analysis of the model is started with the capability 
to immediately adapt the model to necessary safety, security or performance mitigation measures. 
The automated co-analysis can immediately be repeated so that the effect on the other quality 
attributes (violation of rules) can be seen immediately, and countermeasures can be taken. 

4.8.2 Method 
FMVEA (Failure Modes, Vulnerability and Effect analysis) is an extension of the well-established Failure 
Mode and Effect Analysis (FMEA) and was developed for the application on connected industrial 
systems. Additional evaluation was done on automotive systems and comparison with other safety & 
security co-analysis methods. 

The basic concept behind FMEA is that, based on a system mode, failure modes for elements are 
identified and the consequences on the overall system are determined. FMVEA extends this with a 
parallel and even combined consideration of failure modes and threat modes, e.g. not only how a 
component could fail but also how a threat agent could misuse a component. 

A tool has been developed to implement this methodology. The system is modelled in a Model-Editor 
and the threats and failure modes are described using simple grammar, allowing users to specify 
expected behaviour or potential risks. 

Identified threat and failure modes can be taken from the tool and ranked based on their likelihood 
and combined with the impact of the system level effects to determine risks and decide on necessary 
risk treatment options. In the current implementation, risk assessment and risk treatment decision 
would be outside of the tool. 
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Figure 4-22: System-Model 

Figure 4-22shows the diagram from the use case modelled in FMVEA. On the left side of the Figure are 
related actions such as “Create Environment”, “Create Node” and “Create Connection”. An 
Environment can be considered as a container, which provides general attributes to its children. 
Attributes can be focused on security and safety. The attributes of an element are directly displayed 
below the diagram.  

 
Figure 4-23: Defined Rules 

Figure 4-23 displays the rules which should be used to analyse the use case diagram. From the left to 
the right you can see the name of the rule, then a short description and the “Rule”. The “Rule”-column 
is the most important one, because here, the actual rule for the analyzer is defined. 
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4.8.3 Results 

 
Figure 4-24: Analyzer Results 

Figure 4-24 displays the results of the use case analysis. The previously created rules were applied on 
the created diagram. From the left to the right, it’s possible to see the applied rule and the results of 
the specific rule on the diagram. The affected elements and connections can be viewed in the diagram 
if the user clicks on the “Show”-button to the right. Inside the diagram, the affected elements and 
connections get highlighted by a red border as displayed in Figure 4-25. 

 
Figure 4-25: Results shown in the System Model 

Figure 4-25 shows the affected elements of the fifth rule. The definition of the first rule says that if 
there is a connection between the “VtoX Gateway” and the “Internal Gateway” which has the 
attributes “Encryption=false”, “Throughput < 64 bytes/frame” and which crosses the “Root 
Environment/Boundary” (leaves secured environment). As can be seen in the diagram, both attributes 
are fulfilled and the connection leaves the environment/boundary of the vehicle. The observed 
connection and the influencing elements like the gateways and the boundaries are marked red inside 
the diagram. 
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4.8.4 Lessons Learned 
Revision of the rule-grammar 

When creating the rules, it has been noticed that many formulations are very cumbersome. This is 
because no negation of statements is possible. Furthermore, it is necessary that more generic rules 
can be defined. This would improve the reusability of rules. Often elements and connections are 
created, which fall under certain categories. These categories should also be able to be examined by 
rules. This results in generic analyses that can be made simpler and more comprehensive. 

Separate diagrams for logical and physical elements 

In this use case, an attempt was made to map both logical and physical aspects of a system to a single 
diagram. This approach has some disadvantages, as many logical aspects cannot be fully reflected in 
the physical image. This in turn means that essential information can be lost. Therefore, in a 
subsequent version of the tool, the logical and physical representation should be separated. The 
respective elements in both diagrams are then logically linked to each other by a shared Id. A basic 
rule here is that there must always be a physical one for each logical element, but a physical element 
can be modelled but not represented in the logical diagram. 

4.8.5 Further Developments 
SYSML Import/Export 

As described in the previous section, some adjustments are made to the editor. The separation of the 
representation into two different diagrams also allows the editor to adapt to two standardized diagram 
types. A SysML diagram is implemented for the physical representation and a data flow diagram for 
the logical representation. For both diagram types, an import export function is also implemented after 
the implementation, so that existing models can be imported, or created diagrams can be exported.  

Predefined Categories and Diagram Elements 

When creating a diagram, the user has to spend a lot of time defining the individual elements and their 
connections as well as their properties. It has turned out that most elements and connections within 
a diagram occur multiple times. Therefore, a menu is to be implemented in which the user can 
predefine elements and connections and subdivide them into categories. These objects can then be 
easily used in the diagram, which saves a considerable amount of time. 

ReqIF Export Interface for GSFLOW 

In addition to the development of the "FMVEA" tool, the tool "GSFlow" is also developed. GSFlow is a 
standard management tool designed to make it easier for the user to meet public safety / safety 
standards. Requirements are then to be generated from the identified risks in a system, which can 
then be subsequently exported in the "ReqIF" format. In addition to this general export function, an 
additional interface is created which allows these requirements to be automatically incorporated into 
GSFlow.  

4.9 Combined Analysis of Safety, Security and Performance in the Design Stage 
(Space Use Case Example) 

Contributors: All4Tec, Intecs and Tecnalia   

The goal of this proposed method is to allow early validation of the security, safety and performance 
requirements coming from the Requirements stage, identify new safety, security performance 
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requirements (e.g. according to the introduction of mitigation solutions), check the feasibility of the 
updated set of requirements, to properly feed the implementation phase, and give a model-based 
support to be able to determine if the triggering of a trade-off meeting should be enabled. 

The method performs safety, security and performance (SSP) analysis upon the defined model, by 
using seamless integrated tools. The method also enables concept-aware analysis by allowing tracing 
how the entities defined in the models, design and/or analysis-specific ones, are related to the SSP 
concern(s), to monitor their relationships (interference), evolutions, so to support the identification of 
the need of trade-off decisions and co-engineering meetings.    

4.9.1 Aim of Use Case Example 
A model of the software architecture has been provided for the space use case (Use Case 5), by 
considering functional and safety, security and performance requirements, to support the design 
stage. 

We recall that UC5 concerns the evaluation of software running in a multi-core processor supported 
by a well-known hardware architecture that is commonly used in space projects [Deliverable 2.2]. 

The proposed methodology supports the Design stage for the software system and the allocation of 
software components to the target platform. The intended usage scenario is expected to determine 
new requirements for the development stage, raise SSP conflicts warnings to be solved in specific 
trade-off meetings, to finally build a baseline of the requirements to feed the implementation stage. 

4.9.2 Method 
First a model of the software design by using the CHESS modelling language and toolset is provided. In 
particular software components satisfying functional and performance requirements are designed, 
together with the allocation of software components to processors cores. Then model-based 
schedulability analysis of the designed software architecture is enabled in CHESS to check the feasibility 
of the solution. 

The CHESS model has been imported in the Safety Architect tool to conduct local safety analysis at the 
design level. The refined model (e.g., adding safety mechanisms) is complemented with the Cyber-
Architect tool for the security analysis. As result of this safety-security analysis, fault tree analysis 
models are produced for the feared events.  

Then, the Concept-aware analysis tool by Tecnalia was applied on the produced fault tree analysis 
models to create high-level reports on the interference of safety and security aspects, as well as in the 
interference of the logical, physical and functional layers of the design. 

Figure 4-26 depicts the previously presented interactions. 
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Figure 4-26: Description of the interactions 

4.9.3 Results 
Some of the results obtained are presented below. The following figure shows how the CHESS models 
contain time-related annotations that are used to check if safety requirements related to performance 
are satisfied; further details about the CHESS model of the Space Use Case Example are available in 
D2.3.5 Section 4.1.2. 

 
Figure 4-27: Software architecture 
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Figure 4-28: Schedulability analysis results 

Thanks to the prototype bridge between CHESS and Safety Architect, the software architecture was 
imported from the CHESS model to Safety Architect. A safety analysis was conducted in Safety 
Architect as explained in D2.3.5. 

For the needs of the demonstration of the safety-security combined analysis and to feed the concept-
aware tool of Tecnalia, a scenario of software architecture evolution, from a very basic model to the 
current model containing safety and security barriers, was proposed. Safety and security analyses were 
performed at each evolution of the architecture and fault trees were generated. Finally, a safety-
security co-analysis was realised in Safety Architect. These fault trees were exported to be exploited 
by Tecnalia’s tool. Figure 4-29 presents an example of a safety-security tree and Figure 4-30 shows a 
safety-security tree exported in OpenPSA format and integrated tags on the node of the tree to 
indicate their related-viewpoint (safety, security or safety-security) and their related-type (logical, 
physical, functional or generic). 

 
Figure 4-29: Example and part of a safety-security tree 
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Figure 4-30: Example of a tree exported in OpenPSA format with tags on the nodes 

Then, after applying Safety and Cyber-Architect, the concept-aware analysis is used as shown in D2.3.4. 

4.9.4 Lessons Learned 
One of the lessons learned is related to the importance of the evolution of the assets in the design 
stage. Indeed, after several analysis iterations, the engineering teams (safety, security) produced 
analysis results such as fault trees, FMEA, attack trees or threat scenarios. The number of artefacts 
contained by these analysis results can indicate the advancement of the workload in each engineering 
field. Then, if it overcomes an arbitrary threshold or if the variation is important, it may trigger a co-
engineering meeting, to encourage this practice and specially to perform co-engineering as early as 
possible. By analyzing how the assets evolved during the use of Safety- and Cyber-Architect tools, it 
was possible to prototype an enhancement of the Concept-aware analysis tool to provide reports on 
the evolution. A screenshot is presented below showing how the interference of safety and security 
appears at a given point in the evolution. It is being investigated how this evolution can happen within 
the design stage but also can continue in next stages after some iterations.  

 
Figure 4-31: Output of Concept-aware analysis tool 

4.9.5 Further Developments 
Further developments concern the tooling (WP4) to support this kind of combined analysis. One of the 
objectives is to enhance the safety-security analysis. Firstly, this requires improving the import of the 
security artefacts from Cyber Architect to Safety Architect. Next, the safety-security analysis is 
presented via the safety-security trees then it is extended to the FMEA with the creation of a FMVEA 
table. 
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The concept-aware analysis and tool will be extended to requirements and to the entities available in 
the CHESS architecture model. 

Support for traceability between architectural model-level entities and safety/security/performance 
requirements will be enabled in the CHESS environment; a traceability view will also be provided to 
support the various experts involved in the interaction point triggered by schedulability analysis result, 
to understand the requirements actually involved in the context of the current architecture under 
review. 

The complete models are provided in the Annexes. 

4.10 Translation Validation: Checking C Code Conformity (Rail Use Case Example) 
Contributor: CEA 

The proposed method provides an essential verification step in the final stage of an iterative process 
of refinement. The refinement process transitions from an initial, high-level, abstract behavioural 
specification to an implementation, progressively incorporating combined safety, security and 
performance (SSP) requirements. This final stage completes the validation of the translation of a formal 
model to compilable source code and involves functional contract generation and verification with 
static code analysis. 

To illustrate the process, we chose a simplified but representative version of the cyclic redundancy 
check (CRC) used in the railways use case (UC3) to test the integrity of received data. We recall that 
UC3 is COPPILOT, a safe controller for screen doors separating a platform from the tracks of metro rail 
systems. The development of the CRC follows the B method: a formal specification is refined into a 
formal algorithm, and we formally prove that the latter indeed satisfies the former. Finally, the formal 
algorithm is translated to C code, and the result is integrated into the rest of the software 
development. 

A refinement verification method was developed to analyze the conformity of C code generated by the 
Atelier B (development framework of ClearSy supporting the B method) with the specifications of UC3 
expressed in the B0 refinement language. 

To reach that objective, the soundness of the approach and the translation of B0 specifications to ACSL 
specifications (https://frama-c.com/acsl.html) have been studied by CEA. The method was also applied 
by CEA to a representative example supplied by ClearSy using the Frama-C tool (developed by CEA). 

4.10.1 Aim 
The B method is a design process to develop software using B notations and formal proofs. The 
software development starts from abstract specifications of the software behaviours expressed in the 
B language. These specifications are iteratively and manually refined, progressively incorporating SSP 
requirements, until they only use B0 notations that become directly translatable into the programming 
C language. Atelier B performs the formal proof of each of these successive refinements and translates 
the last one into C source code to compile. 

The goal of the proposed method is to provide the missing link (formal proof) between that C source 
code and the last refinement written in B0 language. This is to ensure that the obtained C source code 
correctly represents the formal algorithm. Applying such a method guarantees, through formal proofs, 
that the resulting C source code complies with the B0 specifications and, as a side effect, with the initial 
abstract specifications. Indeed, translation validation is not covered by the B method, but is crucial in 
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the safety process: an error in the translation would lead to a software not executing the intent of the 
developer, represented in the B formal model (traceability is broken). 

The current conventional way of validating the translation is to have two separate software teams 
develop a translator satisfying some translation requirements designed by the validation and 
verification (V&V) team. From a given formal algorithm, the translation is accepted only if both 
translators yield the exact same result (up to spaces). 

In order to ease both the validation of translation and the development of translators, we propose to 
translate the formal algorithm into a pure mathematical description of its effects in the ACSL language. 
The result is formally checked against its actual translation with the Frama-C platform, which allows 
one to prove that the obtained C source code satisfies the ACSL description. 

While the conventional way relies fully on a syntactic correspondence, this new strategy enables 
semantic validation, which allows more flexibility in the translation to C code (optimizations, 
compositions, etc.). In the end, only one translator from B to C has to be developed, and translation 
validation could be automatically ensured by Frama-C, relieving the whole process from the V&V team. 

4.10.2 Method: Verification of conformity of Generated C code  
Verification approach 

The verification the conformity, with B0 specifications, of the C code issued by the code generator of 
the Atelier B (from the specifications of the software implementation expressed in the B0 refinement 
language) can be decomposed in two successive steps: 

1. First, for each B operation, their B0 implementation must be translated into a function 
contract written in ACSL, similarly to the C code generator of the Atelier B that translates 
each B0 implementation of an operation into a C function. 

2. Then, the WP plug-in of Frama-C tool (https://frama-c.com/wp.html) has to prove that all 
C functions satisfy their own ACSL function contract. 

To completely prove that the generated C code refines the B0 implementation, an extra verification 
ensuring the absence of run-time errors (while executing the compiled C code) has to be done. This 
last verification was considered out of scope of this railway case study, even though it can be done 
with the EVA plug-in of Frama-C (https://frama-c.com/value.html). 

Verification method 

In order to reach that verification objective, Frama-C tool and the translation principle of B0 
implementations to ACSL function contracts have to be considered. 

The WP plug-in performs deductive verifications based on weakest precondition computation. 

That technique provides proofs of the correctness of C-functions against their ACSL specifications. The 
proofs are modular: a function is verified independently from its calling context, and only from its C 
source code and the specification of the other functions. For each ACSL code annotation, the WP plug-
in generates a bundle of proof obligations (i.e., first-order logic formulae) that entail their correctness. 
Then, these proof obligations are submitted to the automatic theorem prover Alt-Ergo or the Coq proof 
assistant. Notice that many other provers (such as Z3, CVC4...) can also be used via the Why3 platform. 

The translation principle from B0 language to ACSL function contracts defines for each B0 operation 
two ACSL clauses: 
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1. an ‘assigns’ clause specifying that only one output (of the related B0 operation/C function) 
is allowed 

2. an ‘ensures’ clause with a ‘predicate’ defining the constraint between these outputs and 
the inputs (of the related B0 operation/C function). 

In order to verify that the C implementation conforms to the B0 implementation, contracts of the 
directly called operations have to be supplied and verified separately in the same way. This verification 
is modular and the complexity of the formal proofs do not increase by ascending in the call graph of 
the operations unlike most of the deductive approaches. That looks like a unit verification where the 
precise definition of the contracts related to the called operations is unnecessary. The called 
procedures can be seen as grey boxes where only the knowledge of their input/output operands has 
to be considered. 

First tooling results 

A prototype of a translator from B0 language into ACSL was issued by CEA during the AMASS project 
as proof of concept of the verification method. That prototype does not handle all B0 notations 
contained in the representative example supplied by ClearSy. It needs be completed to handle loop 
statements and array data type. 

A formal proof of the correctness of the method has been issued in Coq (https://coq.inria.fr) from the 
AQUAS project. 

The translation rules have been defined. Particular cases leading to one or more alternatives in the 
translation have been identified. These alternatives have been evaluated in terms of proof automation 
result in order to implement the more efficient one into the next version of the prototype. To perform 
the conformity verification of loop statements in an automatic manner, dedicated lemmas have to be 
provided by the translator. These lemmas have been identified in accordance within the chosen 
external prover. The next version of the prototype will be improved in order to cover the translation 
of loop statements and the use of array data type in B0 notations. 

CEA set up an evaluation environment including the first translator prototype, Frama-C with its WP 
plug-in and the external prover Alt-Ergo (URL: https://alt-ergo.lri.fr/). The environment has been 
delivered to ClearSy. The evaluation of Frama-C results, in terms of proof success, identified several 
issues. These issues come from the nature of the generated ACSL specifications to prove, which are 
quite different to the ones written by hand.  

The next version of the prototype will be improved in order to cover the translation of loop statements 
and the use of array data type in B0 notations. Some issues in the WP plug-in of Frama-C have been 
fixed into the development version since the evaluation environment was delivered to ClearSy. The 
next delivery, planned for the end of June, will include new versions of both the B0 to ACSL translator 
and Frama-C with the WP plug-in. 

4.10.3 Results 
From an extract of the B formal initializer in Table 4-8, we get the corresponding C code in Table 4-9 
with the B to C translator of the project. 

 
 INITIALISATION 
    vid := 0 ; 
    c1mcr := 0 ; 
    c1mr1 := ( 0 .. c_sizeof_msg_minus1 ) * { 0 } ; 
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    c1mr2 := ( 0 .. c_sizeof_msg_minus1 ) * { 0 }  
Table 4-8: formal B source algorithm 

 

/* Array and record constants */ 
/* Clause CONCRETE_VARIABLES */ 
uint32_t donnees__vid; 
uint32_t donnees__c1mcr; 
uint8_t donnees__c1mr1[cst_projet__c_sizeof_msg_minus1+1]; 
uint8_t donnees__c1mr2[cst_projet__c_sizeof_msg_minus1+1]; 
 
/* Clause INITIALISATION */ 
void donnees__INITIALISATION(void) {    
    unsigned int i = 0; 
    donnees__vid = 0; 
    donnees__c1mcr = 0; 
    for(i = 0; i <= cst_projet__c_sizeof_msg_minus1;i++) { 
        donnees__c1mr1[i] = 0; 
    } 
    for(i = 0; i <= cst_projet__c_sizeof_msg_minus1;i++) { 
        donnees__c1mr2[i] = 0; 
    } 
} 

Table 4-9: C translation 

On the other hand, Table 4-10 shows the translation of the same B formal initializer to ACSL. 
 

axiomatic donnees_i__predicates{ 
   predicate B0_donnees__INITIALISATION(uint32_t donnees__c1mcr__1, 
                        uint8_t donnees__c1mr1__1[B0sizeof1_donnees__c1mr1], 
                        uint8_t donnees__c1mr2__1[B0sizeof1_donnees__c1mr2], 
                                                    uint32_t donnees__vid__1) =  
donnees__vid__1==0 && 
donnees__c1mcr__1==0 && 
\forall integer B0i0;  
 (0<=B0i0<=B0_cst_projet__c_sizeof_msg_minus1)==>donnees__c1mr1__1[B0i0]==0) && 
\forall integer B0i0; 
 (0<=B0i0<=B0_cst_projet__c_sizeof_msg_minus1)==> donnees__c1mr2__1[B0i0]==0); 
 
module donnees_i: 
function donnees__INITIALISATION: 
contract: 
  assigns donnees__c1mcr,donnees__c1mr1[..],donnees__c1mr2[..],donnees__vid; 
  ensures B0implem: B0_donnees__INITIALISATION(donnees__c1mcr, 
                            (uint8_t [B0sizeof1_donnees__c1mr1])donnees__c1mr1, 
                            (uint8_t [B0sizeof1_donnees__c1mr2])donnees__c1mr2, 
                            donnees__vid); 
 
at loop 1: 
  loop assigns i, donnees__c1mr1[0..B0_cst_projet__c_sizeof_msg_minus1]; 
  loop invariant idx1: 0 <= i <= B0_cst_projet__c_sizeof_msg_minus1+1; 
  loop invariant init1: \forall integer k; 0 <= k < i ==> donnees__c1mr1[k]==0; 
 
at loop 2: 
  loop assigns i, donnees__c1mr2[0..B0_cst_projet__c_sizeof_msg_minus1]; 
  loop invariant idx2: 0 <= i <= B0_cst_projet__c_sizeof_msg_minus1+1; 
  loop invariant init2: \forall integer k; 0 <= k < i ==> donnees__c1mr2[k]==0; 

Table 4-10: ACSL translation 
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Finally, the resulting C code is verified with regards to the ACSL specification with Frama-C, which leads 
to the translation validation result in Table 4-11. 
 

Table 4-11: Validation report 

Module Function Total Valid Failed Success 
crc_main - 24 24 - 100 
crc_i7 crc__Get_CRC - - - - 
crc_i INITIALISATION - - - - 
util_i util__get_add_uint32 2 2 - 100 
util_i util__INITIALISATION 2 2 - 100 
verif_main - 29 29 - 100 
itf8 itf__get_ccrc1 2 - 2 - 
itf itf__get_ccrc2 2 - 2 - 
verif_cpt_i verif_cpt__dectc 2 2 - 100 
verif_cpt_i verif_cpt__dectr 2 2 - 100 
verif_cpt_i verif_cpt__initc 2 2 - 100 
verif_cpt_i verif_cpt__INITIALISATION 2 2 - 100 
verif_cpt_i verif_cpt__initr 2 2 - 100 
verif_cpt_i verif_cpt__testtc 2 2 - 100 
verif_cpt_i verif_cpt__testtr 2 2 - 100 
verif_i verif__INITIALISATION 2 2 - 100 
verif_i verif__process9 2 1 1 50 
donnees_i donnees__get_c1du 2 2 - 100 
donnees_i donnees__get_c1mr1 2 2 - 100 
donnees_i donnees__get_c1mr2 2 2 - 100 
donnees_i donnees__get_c1r2du 2 2 - 100 
donnees_i donnees__INITIALISATION 8 8 - 100 

4.10.4 Lessons Learned 
The tool proved to be very efficient, though more work is needed in order to address more B 
constructs, and ultimately to cover the full language. Of particular interest for the following are loops: 

                                                             

 
7 Translation of CRC implementation is not fully supported by the B0 to ACSL prototype (support for 
translation and proof of B0 loop statement is required). 
8 The ITF machine is not fully refined. Since there is no B0 specifications for it, the conformity of its 
operations cannot be validated with the proposed method. 
9 The PROCESS operation of the B0 implementation of the module VERIF is not fully automatic. The 
missing proof can be done using the interactive prover TIP of WP plug-in of Frama-C. In order to reduce 
necessary effort for performing that proof, improvements in the translator replacing some existential 
quantifiers by let-in constructs. 
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deductive verification requires the correct invariant to be computed, which might be tedious to 
automatize from the few examples we manually studied. Overall it was important to be able to verify, 
with the tool, that the implementation is conform to requirements derived from SSP tradeoff analysis, 
and that the tradeoffs were feasible from an implementation point of view. Feasibility feedback given 
by static code analysis can be used as an additional input in the iterative SSP requirements analysis. 

4.11 Safety and Performance Analysis in Multiprocessor Task Scheduling (Space 
Use Case Example) 

Contributor: ITI 

The aim of the proposed method is to produce combined performance and safety metrics at the level 
of code generation and its assignment to processing cores in a multi-core system. The approach is 
illustrated by application to the Architecture Design Phase of the space multi-core use case (UC5). This 
example also illustrates the inter-operation of three different analysis tools and some newly-
developed protocols which support the communications between the tools. 

The method involves the inter-operation of three separate tools: A2K (ITI) is used to perform timing 
analysis computations and act as a manager for the other two tools; TimingProfiler (AbsInt) is used to 
calculate the Worst-Case-Execution-Times (WCET) of code modules; ANaConDA (BUT) is employed to 
measure dynamic safety metrics of the generated code. 

The space use case (UC5) involves code running on a multi-core processor system. Timing and code 
safety analysis is essential to prove the code can be safely scheduled and run under all operating 
circumstances. 

4.11.1 Aim 
The main goal of this work is to produce performance and safety metrics for multi-threaded code 
running on multiple processing elements. These code segments are interruptible according to a 
specified scheduling protocol and they may intercommunicate with each other via a variety of 
mechanisms such as, for example, shared memory, communications ports, buses, etc. This is a general 
view of the specific scenario presented in the space use case. 

The performance metrics which we desire are the response times and data throughput of the system’s 
flows (defined below), while the safety metrics we require are (a) whether all the computational tasks 
meet their defined deadlines, and (2) measures of code-safety in terms of operations like access to 
shared memory areas and determination of possible data-races in multi-threaded code. 

A secondary aim of this work is to investigate and develop communications protocols to enable inter-
operation between the three analysis tools. Our goal is to provide the system architect with a tool suite 
which facilitates rapid interaction and analyses of different system designs, a process sometimes called 
“Design Space Exploration”. 

4.11.2 Method 
The abstract computational model which we employ is based on a set of flows. A flow is defined as a 
collection of activities (or tasks) which are to be executed in some predefined sequence. Each flow has 
a specific activation pattern which defines the times that the flow’s computations are started. The 
activities of each flow can be executed on different processing elements and have a predefined 
execution order. The activities might have access to shared resources such as memory, buses, or 
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peripherals. The various computational flows have defined priorities and their activities are scheduled 
according to the scheduling algorithm of the underlying operating systems. 

The combined analysis employs 3 interconnected tools developed by different AQUAS partners. 

A2K (ITI)  

A2K provides editors to define the system architecture in terms of the hardware devices and their 
interconnections and also the software architecture in terms of code modules which are stored in a 
Git repository. A2K also defines a deployment model which is effectively a mapping of the code 
modules to processing elements along with definitions of the scheduling algorithm, the flow priorities, 
and execution orders of each flow’s activities. A2K performs timing and scheduling analysis of the 
overall system. To do this, it requires the WCETs of the code segments. These are computed by the 
TimingProfiler tool described next. Finally, A2K manages communication with the TimingProfiler and 
ANaConDA analysis tools, and it also prepares analysis reports. 

TimingProfiler (AbsInt) 

This tool computes the worst case execution times of each code module stored in a GIT repository. We 
have developed a connection between A2K and TimingProfiler using the GraphQL protocol and a 
virtual machine (Docker) running the TimingProfiler. In this way, the A2K user can quickly obtain the 
execution times of code modules for analysis. If the code in the repository or the system’s architecture 
is changed, then it is easy to re-run the timing analysis to obtain new reports. 

ANaConDA (BUT) 

ANaConDA is a framework that simplifies the creation of dynamic analysers for analysing multi-
threaded C/C++ programs on the binary level. The framework provides a monitoring layer offering 
notification about important events, such as thread synchronisation or memory accesses, so that 
developers of dynamic analysers can focus solely on writing code. In addition, the framework also 
supports noise injection techniques to increase the number of inter-leavings witnessed in testing runs 
and hence to increase chances to find concurrency-related errors.  

A connection between A2K and ANAConDA is currently under development. This is based on the Open 
Services for Lifecycle Collaboration (OSLC) protocol. Our goal here is to use the REST services provided 
by OSLC to send the code segments from a Git repository, perform the safety analysis, and return the 
results to A2K for assessment and reporting. 

4.11.3 Results 
At the present time, the algorithms for timing analysis in A2K and communication with TimingProfiler 
are complete and working. An example of the output of timing analysis is shown in Table 4-12. The 
important information to glean from this table is the computed response time of each task and 
whether this figure is smaller than the task’s deadline. Results on the analysis of code safety using 
ANaConDA will be presented in due course when the OSLC interface is complete. 
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Table 4-12: Bin packaging thread allocation results 

 

4.11.4 Lessons Learned 
We are developing a flexible and highly interactive tool suite for performance and safety analysis of 
multicore code segments. The tool enables the design engineer to quickly and easily try out different 
system architecture designs and to evaluate their timing performance and code safety aspects. We are 
now applying this process to the code associated with the space use case. This, however, has required 
a certain amount of “reverse engineering” as, given the use case source code, we need to derive a 
suitable computational model in terms of flows and activities. 

The verification of the timing analysis is somewhat problematic - the calculations are complex and rely 
on several assumptions. We need to determine if the computed response times are accurate. To do 
this we have built a monitoring system which downloads code to real hardware and physically 
measures the task response times. These are then compared to the results obtained from our analysis 
thus verifying the calculations or not. Preliminary experiments are encouraging and indicate that our 
timing analysis is correct. 

4.12 Efficient Formal Verification of System Software Using Ada 2012 and SPARK 
2014 (Space Use Case Example) 

Contributor: HSRM 

HSRM's methodology aims to reduce the time and effort it takes to develop formally verified system 
software. In this example, the goal is to evaluate the said methodology and to cover the interaction 
between safety and security in an effort-efficient way (i.e. containing the development cost of applying 
formal methods). It is expected to achieve improvements in all three dimensions: safety and security 
will be improved due to the application of formal methods and the provision of formal correctness 
proofs, while development performance is expected to be improved (in comparison to other processes 
featuring formal verification) due to SPARK’s ability to specify contracts as part of the source code. As 
for computational performance, a certain decrease is to be expected. The evaluation was done by 
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delegating a subset of the work to a student who was unfamiliar with the methodology and 
benchmarking his effort and his achievements. 

4.12.1 Aim in the Use Case 
Ada 2012 is a programming language which was designed, and is commonly used, in the development 
of safety-critical systems. SPARK 2014 is a toolset and methodology based on a subset of Ada 2012 
with extensions to enable the semi-automated definition and verification of formal correctness proofs. 

A development process using Ada 2012 and SPARK 2014 was applied to the development of a critical 
component of a microkernel in the Space Multicore use case (Use Case 5). As the development process 
implies a defined methodology, the decision to apply it needs to be taken in the concept phase. The 
trade-off between increased safety, security and efficiency of development on one side and a potential 
loss of computational performance on the other needs to be taken into account in this early phase. 
This work is expected to yield criteria to facilitate such decisions. 

We recall that UC5 concerns the development of software for space missions leveraging multicore 
processor architectures [Deliverable 2.2]. Space software applications rely on system services to be 
provided by an operating system kernel, which, for this use case, needs to support multicore 
scheduling. Such a kernel is the most critical component of any space-borne computer system; 
therefore, it should be proven to be correct by design. 

The ultimate goal of our effort in UC5 is to apply our methodology to the design of a microkernel 
suitable for running space mission software. We aim to obtain formal proofs of correctness during the 
design phase. For this particular analysis, a central component which deals with the dynamic allocation 
of tasks to cores has been chosen: the scheduler. In order to demonstrate general effectiveness of the 
approach, this scheduler is implemented and formally proven.  

4.12.2 Method 
HSRM's methodology uses a hierarchical approach to achieve formal verification more efficiently. A microkernel is being 

developed using the proposed methodology as an experimental platform to exercise the approach, the microkernel under 
development has a layered architecture where each layer is broken down into separate modules (see  

 

 

 

Figure 4-32). Each module can be proven separately and can be used by higher layers. Additionally, if 
a module cannot be entirely or partially proven, it has to be tested intensively. A prototype of the 
microkernel was written in C, but the technology used for formal verification and implementation is 
SPARK 2014. SPARK is a subset of the programming language Ada which enforces necessary restrictions 
to make formal verification possible. Additionally, SPARK allows the definition of a formal specification 
in the form of contracts (verification conditions). Using the SPARK 2014 tools, a formal proof can be 
conducted to show whether the source code fulfils the contracts. 

 



AQUAS D3.2 Combined Safety, Security and Performance Analysis and Assessment 
Techniques - Preliminary 

Version 2.0 
 

 

 

   

 
© AQUAS Consortium 95 

 

 

 

 

 

 

 

  
 

 

 

 

Figure 4-32: Hierarchical approach 

4.12.3 Results 
To benchmark this method, a student rewrote the scheduler module in SPARK and was able to verify 
216 out of 224 verification conditions. The effort was limited to 450 hours. During his work, the student 
categorised and noted his effort as follows: 

 

• LUE:  

◦ Literature study & Initial 
training 

• PRT:  

◦ Implementation & Project 
Coordination 

• AUP:  

◦ Documentation & 
Presentation 

• VNPM:  

◦ Project Management 

 

The category “Implementation & Project Coordination” is further split into the following subcategories: 
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• MIG:  

◦ Porting C code to SPARK 

• VER:  

◦ Writing and proving verification 
conditions 

• KOO:  

◦ Project Coordination 

• SIM:  

◦ Writing a simulator to test the scheduler 
Figure 4-33: Distribution of efforts within implementation and project coordination 

Further, the implementation and verification efforts were analysed based on the lines of code of the 
respective action and compared with the implementation and verification efforts of the seL4 [6] 
microkernel: 

 

HSRM Efforts 

C Code cloc Code Lines Assertions Verification per loc 

sched.c 252 193 59  

sched.h 22 21 1  

test_sched.c 90 0 46  

C Total 364 214 106 0.50 

 

SPARK Code cloc Code Lines Verification Conditions Verification per loc 

sched.ads 317 273 44  

sched.adb 201 23 178  

sched_verification.ads 108 0 108  

SPARK Total 626 296 330 1.11 

 

 Implementation Verification 

Overall Effort 62.25 h 95.25 h 

Effort per loc of scheduler ~ 4.7 min ~ 19.31 min 
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The C code was a good starting point since it already had many assertions which were the basis for 
many verification conditions. The C code had 0.5 assertions per loc and the SPARK code 1.11 
verification conditions per loc. Based on the documented efforts it took the student on average 4.7 
minutes to implement a line of code and about 17.3 minutes to verify a line of code. 

seL4 Efforts 

 Haskell / C loc Isabelle loc Invariants Proof loc 

Abstract spec. - 4,900 ~ 75 110,000 

Executable spec. 5,700 13,000 ~ 80 55,000 

C implementation 8,700 15,000 0  

 

For the seL4 microkernel, a different approach was used for the implementation and verification of 
the kernel. An Abstract spec was implemented and verified in Isabelle/HOL and is the basis of the 
verification. Further an executable spec was written in Haskell and verified in Isabelle/HOL and lastly, 
the Haskell code was transformed into C code. The following efforts can be found in [Klein] and were 
converted into min/loc.  

• Abstract spec.   ~ 4 person months (460 PH)   

• Haskell prototype  ~ 2 person years   (3,520 PH)   

• Executable spec.  ~ 3 person months (480 PH)     

=> Verification  ~ 29 person months (4,640 PH)   ~ 32 min/loc 

• C implementation  ~ 2 person months (320 PH)    ~ 2.43 min/loc 

4.12.4 Lessons Learned 
The results with respect to the expected increase in development performance were satisfactory, 
especially since the student was unfamiliar with the methodology, SPARK 2014 and formal 
verification in general. This is also seen in the large amount of effort the initial training took. The 
student attempted to learn Ada first before looking at SPARK. According to his own assessment, this 
was unnecessary and only learning the SPARK 2014 subset would have been sufficient for this task. It 
has been shown that the critical microkernel component which was the subject of this study correctly 
implements its specification. Whether this increased assurance implies better safety or security of 
the code depends on the correctness of the specification. To this end, the SPARK based development 
process can be helpful by providing hints in cases of inconsistencies at the specification level, as 
these typically make verification harder, if not impossible. Therefore, in future work, the actual steps 
taken to transform a program to make it more suitable for verification will examined more closely. 

4.12.5 Further Developments 
The method will be used to implement the remaining modules of the C prototype and the 
implementation and verification efforts will be benchmarked. Furthermore, the microkernel’s 
throughput as well as real-time capabilities will be evaluated to determine the effect of the 
development process on computational performance. 
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Furthermore, a comparison between verification and testing efforts will be conducted. This will require 
the development of test cases for verified components, while benchmarking the process. 

4.13 Combined Model-Based Testing for Multiple Concerns (ATM Use Case 
Example) 

Contributor: AIT 

Combined Model-Based Testing for Multiple Concerns brings together functional, safety, security and 
performance aspects in verification.  

The method is applied to UC1 Air Traffic Management, which provides an infrastructure for unmanned 
aerial vehicles (UAVs) to collect and share position data of UAVs and normal air traffic, with the 
purpose to avoid accidents and maintain no-fly zones. The use case comprises a client part in the UAVs 
and a ground based server part. 

At this time, only the concept is presented, application to UC1 has just started. While the combined 
testing approaches share artefacts and tooling, they can in part be applied independently and it is not 
yet clear which parts will be fully applied within the project to the selected use case. 

4.13.1 Aim 
The combined testing approach uses analysis outcomes for verification and validation and takes 
advantage of synergies between approaches to verify the different quality attributes. This in particular 
includes reuse of results of modelling efforts spent earlier in the project as much as possible. 

The combined method itself is in principle applicable on system level down to software unit level. 
Where it is applied depends on:  

a. the amount of modelling effort that can be spent and the modelling detail achieved  
b. if the requirements and target properties out of the analysis steps are sufficiently detailed and 

applicable to that level (unit, component, sub-system or system)  

The techniques combined in the method to address the different concerns are: 

- Functional testing 
- Robustness/Security testing 
- Invariants (= “safety”) checking of the behaviour model 
- Invariants (= “safety”) monitoring of the implementation 
- Performance monitoring of the implementation 
- Performance testing according to expectable loads 
- Stress Testing 
- Implementation performance predictions 
- Implementation performance prediction validation 

Within the ATM use case, a main goal will be evaluating the performance behaviour under expectable 
loads and if there are emerging effects on the system for a high number of participating UAVs. 
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4.13.2 Method 
Figure 4-34 shows an overview of the different techniques comprising the method, their respective 
steps and how they play together. The descriptions below refer to the different artefacts and process 
steps of the diagram in Cursive letters. 

  
Figure 4-34: Method overview – combined model-based testing for multiple concerns 

4.13.2.1 Functional testing 
In step F1. Model Behaviour, a Behaviour Model is built, formalizing the Functional Requirements - in 
our case into UML state machine diagrams. From this model, functional tests can be generated (step 
F2.). As generation strategy, either random walks or a coverage driven approach can be used. As 
coverage metric, the used tool offers model mutation coverage, which allows one to emulate several 
other coverage metrics, if needed. [Mutation-TCG] gives details on the mutation driven test case 
generation and how it is implemented. 

 

The generated tests are sequences of stimuli (controllable events, things the tester can influence) and 
reactions (observable events, things the tester can observe and verify). Both types of events need to 
be part of the test interface expressed in the model. 

The Test Harness (step F3.) takes those sequences, applies the stimuli to the system under test and 
compares the systems reactions to the expected/allowed events in the test. Usually, the Test Harness 
also needs to translate between the abstract events in the model and the concrete events the System 
Under Test. 
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4.13.2.2 Robustness/Security testing 
The Behaviour Model used for functional testing can also be used to Generate Negative Tests (step 
SC1.). This is done using Smart Fuzzing, where a protocol or behaviour model is explored, and 
unexpected inputs are randomly added to the allowed stimuli. 

The tests are generated in a way, that these inputs are expected to be silently ignored and do not affect 
the observable behaviour of the system. In an alternative mode, after each unexpected input, an 
anonymous error handling response is inserted into the test. The Test Harness then needs to check if 
system responses after an unexpected input fall into a defined set of error handling responses and are 
not any unwanted behaviour. 

This second mode can help to keep standardized handling of erroneous inputs out of the model, but 
more complex fault handling, that for example rolls back the inner system state to stay safe, needs to 
be modelled explicitly, if it shall be tested. 

Since the tests continue after the unexpected input with positive tests, problems like dead locks should 
be implicitly recognized by the test harness, without implementing additional test oracles. In case 
there are unwanted conditions that could be provoked by fuzzing, but are neither affecting the 
expected responses nor the Safety Assertions, nor the Performance Assertions (both see further 
below), this would need an additional explicit test oracle to be implemented in the Test Harness. 

4.13.2.3 Invariants/Safety checking of the behaviour model 
In case there are given Safety Requirements or other conditions that need to hold during the operation 
of the system, possibly also some contracts giving pre- and post-conditions for the behaviour, they are 
formalized into Safety Assertions in step SF1. Formalize Safety Requirements. The conditions can be 
expressions over the test interface events only or they can also contain internal variables. 

During test case generation, these assertions can be checked by the test case generator in step SF2. 
Observe Safety Assertions. This is much weaker than full classical model checking. The test case 
generator tries to avoid exploring the full state space for performance reasons and hence can give no 
guarantees. In case a breadth-first-search strategy is used by the test case generator, the given 
guarantees are similar to bounded model checking. If a model checker for the formalism of the model 
is available and its use is feasible for the size of the model, this shall be preferably used. 

4.13.2.4 Invariants/Safety monitoring of the implementation 
Given that either the Safety Assertions are only expressions over the events in the test interface, or 
the used internal state variables of the System Under Test can be observed in the Test Harness, step 
SF3 Monitor Safety Assertions can become part of the Test Harness. It can check that the modelled 
Safety Requirements hold during all tests – functional (random and coverage driven), robustness, and 
performance driven. 

4.13.2.5 Performance monitoring of the implementation 
Based on a performance instrumentation of the test harness (P1. Performance Logging) and 
Performance Requirements that lead in step P2. Formalize Performance Requirements to Performance 
Assertions, these Performance Requirements can be monitored during testing as part of the Test 
Harness in P3. Monitor Performance Assertions. 
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The Performance Requirements can be either upper or lower thresholds for parameters that can be 
measured on the System Under Test (memory, processor load, bandwidths use, heat dissipation, …) or 
response times for certain actions in the system.  

This monitoring can be active during all types of tests – functional tests, robustness tests and dedicated 
performance tests (see below). 

4.13.2.6 Performance testing according to expectable loads 
If in step P4. Build Usage Profiles, Usage Profiles can be derived from the Performance Requirements, 
they can be used in step P5. Generate Performance Tests to provide tests that mimic the expectable 
load of the system. This is done by steering random walks (see 4.13.2.1 Functional testing) with the 
probability distributions given for the input events and possibly their parameter values. 

The actually achieved performance is checked in P3. Monitor Performance Assertions. 

4.13.2.7 Stress Testing 
The Performance Logs recorded during testing or normal system operation can be condensed into Cost 
Profiles in P6. Cost Profile Learning. This uses forms of regression learning and relates the 
“performance cost” to the behaviour model. 

In step P7. Generate Performance Tests, using the Cost Profile, Performance Tests can be generated 
that try to put stress on the system for each type of performance measurement, individually or 
combined. 

Of course, while running such stress tests, not only the Performance Assertions can be monitored, but 
also behaviour that changes or Safety Assertions that do not hold under stress can be identified. 

4.13.2.8 Implementation performance predictions 
With the Cost Profile, the Usage Profile and the Behaviour Model available, in step P8., Predictions of 
Performance can be made using methods like Statistical Model Checking. The result is a probability 
distribution of a certain performance hypothesis to hold. The chosen hypothesis is usually related to 
the Performance Assertions. 

4.13.2.9 Implementation performance prediction validation 
Since the Cost Profile is only based on a sample of the behaviour and could be wrong, the performance 
predictions need to be validated on the System Under Test. Using hypothesis testing, the number of 
tests that need to be run on the System Under Test to demonstrate that the hypothesis holds, can be 
kept substantially smaller than the number of simulation runs done in the model. Step P9. Generate 
Performance Tests produces such a small test suite. 

4.13.3 Results 
As the approach builds on models, and behaviour modelling for UC1 is still ongoing, no results can be 
presented yet.  

The current UC1 model contains several interacting state machines, modelling behaviour of several 
interacting actors in the system. As of now, as can be seen in Figure 4-35, the model expresses 
movement between various states but does not contain effects that would be observable on the 
outside, which is needed to decide if an implementation of this shows the same behaviour. 
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Figure 4-35: Example state machine from UC1 

4.13.4 Lessons Learned 
While the approach aims at keeping additional efforts for modelling low, the model built without 
having testing in mind was - not a completely unexpected surprise – not directly usable. The focus on 
understanding a concept allows one to leave out details that would be needed for an “almost-
executable” model, which again builds the basis for the described method. Experience from other 
projects shows that adding a notion of a test interface and a clear definition of borders of the system 
under test are not only indispensable for any form of test case generation, but implicitly contribute to 
better testability of the architecture and design. We expect the same to happen when we start 
formalizing performance criteria. 
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4.13.5 Further Developments 
Only part of the sketched method is already implemented and available in tools that play well together. 
The plan for AQUAS is to finish adding the described performance testing features (4.13.2.5-4.13.2.9 
inspired by [SMC-response-times]) to the test case generator MoMuT, which already included random 
and coverage driven functional testing and fuzzing as features. To apply the method to the 
demonstrator, there is additional work to be done on the tooling, regarding a changed definition of 
the test interface in the model and completing the feature to check safety properties during test case 
generation. For application in the demonstrator, also several things need to be added to the Test 
Harness, in particular to measure and collect performance data. 
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5 Interaction Point Planning in the Use Cases 
This chapter contains an update on the planning of the IPs that will occur during the part of each use 
case development that is included in the AQUAS project. The description format introduced in D3.1 
has been retained as suitable for these descriptions; but the plans have been revised in view of 
experience with the combined analyses and updated estimates of effort required. 

5.1 IP Plan for the The ATM Use Case (UC1) 
As reported in deliverable D2.3.1, the PLC of ATM use case is based on the V-model (see  Figure 5-1) 
that mainly represents the current baseline for Integrasys that is/has been used to develop 
applications internally (without AQUAS Co-Engineering methodology). Figure 5-1 shows the allocation 
of each partner involved in the use case within this PLC. 

 
Figure 5-1: PLC for Use Case 1, with interaction points 

 

This model allows us to have a rigorous development lifecycle where we can identify the next 
interaction points during the process that currently is carried out: 

• SSR (Software Specification Review). The SSR is a technical assessment establishing the 
software requirements baseline of the system in order to ensure the preliminary design. 

• PDR (Preliminary Design Review). The PDR is a technical assessment establishing the physically 
allocated baseline to ensure that the system has a reasonable expectation of being judged 
operationally effective and suitable. 

• CDR (Critical Design Review). The CDR is a technical assessment establishing the build baseline 
to ensure that the system has a reasonable expectation of being judged operationally effective 
and suitable. 

• QR (Qualification Review). The QR is a technical assessment in order to ensure that the 
integrated software is tested to provide evidence for compliance with the software 
requirements. 
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• AR (Acceptance Review). The AR is a technical assessment in order to verify the completeness 
of the specific end products in relation to their expected maturity level and assesses 
compliance to stakeholder expectations. 

 

Furthermore, in the lifecycle we can differentiate the following time phases: 

• Phase 1: definition of the idea and concept, project context, user needs and high level 
requirements (finishes with SRR assessment). 

• Phase 2: preliminary (high level) design with main trade-offs identified and resolved, mapping 
of high level requirements in low-level requirements and selection of preliminary technologies 
and platforms (finishes with PDR assessment). 

• Phase 3: final (low level) design, including possible changes in the design (e.g. using simulation 
tools or prototyped) and confirmation of technologies and platforms (finishes with CDR 
assessment). 

• Phase 4: implementation and integration (finishes with QR assessment on pre-production). It 
includes implementation and testing according to the implementation in a pre-production 
environment. This stage can be divided into two sub-stages: 

o Implementation and unitary testing (4a). 

o Integration and testing at system level (4b). 

• Phase 5: this stage covers the validation and deployment in production environment (finish 
with the AR assessment).  

• Phase 6: maintenance. 



 
 

 

The next table shows the interaction points defined for this use case taking into account that we are located on the phase 4 (implementation) and that another 
combined analysis could be included in this interaction points in order to solve potential security/safety/performance conflicts that could come out in next phases: 

Table 5-1: Interaction Points of ATM use case. 

Interaction 
Point 

Identifier 

Interaction Point 
Informal Description Combined Analysis Who 

On the basis of 
which 

information 
(artefacts) 

Attributes 
studied 

Producing what kind of results 
(outputs) Gaps Comments 

Interaction 
Point 1 
(IAP_01) 

Type: Discussions. 
PLC Placement: High Level 
Design. 
Purpose: high-level 
requirements consolidation 
first set of low-level 
requirements generated 
including identification of SSP 
controls and PDR approval. 
Activities: Modelling and 
analysing possible 
interferences and conflict 
points. 

Cross-check of 
system-targets and 
low-level 
requirements using 
tools data and 
involving expert staff 
discussions. 

Integrasys , 
Intecs, Trusport 

 
System high level 
targets 
CON-OPS and 
preliminary 
architecture 
Environment 
characterization & 
restrictions 
Preferred 
technologies 
High level CHESS 
model, SSDLC and 
Medini (TBC). 

Sa/Se/P 

A consensuated set of low-level 
requirements, a first functional 
implementation design and 
identification of specific 
safety/performance/security controls 
needed. 
 
Re-write some of the targets if 
needed.  

  

Safety objectives 
pursuing absence 
of i) software 
safety violations 
(reaching forbidden 
states), ii) 
deadlocks (where 
the program seems 
to stop running and 
stops responding to 
events) and iii) live-
locks (where the 
program cycles 
endlessly but can’t 
make progress). 

Interaction 
Point 2 
(IAP_02) 

Type: Simulations, Prototyping 
and Discussions. 
PLC Placement: Low Level 
Design 
Purpose: Final low level 
requirements established for 
the client-side including SSP 
controls and CDR aproval 
Activities: Modelling and 
analysing possible 
interferences and conflict 
points. 

a) Client-side 
reliability, 
schedulability and 
deployment 
(Safety/Security/Perf
ormance) 
b) DDS client-side 
security 
configuration 
(Security/Performanc
e). 
c) Mobile network 
selection strategy 
(Security/Performanc
e). 

Integrasys 
(a,b,c) 
Intecs, UNIVAQ, 
HSRM, BUT (a) 
Trustport , City 
(b) 

Preliminary (Non-) 
Functional low level 
requirements 
including SSP 
controls.  
a) Low-level CHESS 
model, 
HEPSYCODE/ 
ANACONDA results. 
b) SAN, sDDS & SW 
prototyping. 
c) SW prototyping.  

Sa/Se/P 

A consensuated low level design of 
the UC1 client-side (including platform 
deployment) with agreed trade-offs of 
performance, security and safety. 
Re-write some of the requirements if 
needed.  

  

CHESS models to 
be reused by AIT in 
the verification 
phase. 
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Interaction 
Point 3 
(IAP_03) 

Type: Simulations, Prototyping 
and Discussions. 
PLC Placement: Low Level 
Design. 
Purpose: Final low level 
requirements established for 
the server-side including SSP 
controls and CDR approval. 
Activities: Modelling and 
analysing possible 
interferences and conflict 
points. 

a) DDS server-side 
analysis 
(Safety/Security) 
b) DDS server-side 
analysis 
(Performance/Securit
y) 

City, Trustport, 
BUT, Intecs 
(TBC) 

Preliminary (Non-) 
Functional low level 
requirements 
including SSP 
controls.  
 
SAN model and 
DDS 
implementations 
with traffic fuzzing. 

Say/Se/P 

A consensuated low level design of 
the UC1 server-side with agreed 
trade-offs of performance, security 
and safety. 
 
Re-write some of the requirements if 
needed.  

  

Intecs may provide 
support for easier 
and accelerated 
SAN simulation. 

Interaction 
Point 4 
(IAP_04) 

Type: Implementation-based 
assessment. 
PLC Placement: Verification. 
Purpose: Verify client-side 
implementation under realistic 
performance/safety/security 
threats. 
Activities: Testing, results 
assessment, requirements 
checking, pre-QR approval. 

Component unit-level 
verification 
Overall software 
schedulability & 
dependability 
(simulated DDS 
server) 
LTE specific tests. 

Integrasys 
(overall test 
responsibility)  
AIT, BUT, City 
(TBC) providing 
specific test 
support. 

Implementation 
artefacts 
Testing artefacts 
(MoMuT, 
ANACONDA and 
SAN). 

Sa/Se/P Test results traceable to established 
low-level and high-level requirements.   

During 
implementation, 
SYSGO/ABSINT 
tooling will be used 
but no formal IP is 
defined at that 
phase. 
City may provide 
support to test DDS 
service under 
attack. 
A full QR approval 
would need a full-
system testing 
(client and server 
side) which is out 
of scope. 



 

5.2 IP Plan for the Medical Devices Use Case (UC2) 
The medical device use case is about developing a device for closed-loop control of patient blood 
pressure and neuromuscular transmission by extending a monitor product, already in widespread use, 
with control algorithms to directly control infusion pumps. The part of the PLC taking place during 
AQUAS is the development of core functions. How this process differs from a stylised V-model PLC 
was discussed in D3.1, section 4.6.2 (for details on the UC and demonstrator, see also D2.3.2). 

By the end of AQUAS, the state of development is planned to be a prototype including full 
implementation of blood pressure and NMT control, with a “hardware in the loop" (HiL) test setup , 
suitable for testing (now under way for the blood pressure control) to demonstrate that the product 
is safe for lab testing with patients. In addition, it is expected that some of the improvements to human 
interface (for safety) and security aspects identified in IP1, intended for the final version for clinical 
use, will be implemented.  

The planned IPs have thus evolved slightly, with no change to IP1, which concerns the stage of 
requirements and concept design and is mostly completed; while IP2 is envisaged to specify the 
verification activities for the complete product, meant to demonstrate achievement of all required 
SSP properties. Although the complete verification itself will be completed after AQUAS, on the full 
prototype for clinical use, parts of it are piloted in AQUAS, starting with the mentioned testing of the 
control algorithm for robustness. 



 

Table 5-2 : Interaction Points of Medical use case 

Interactio
n Point 

Identifier 

Interaction Point 
Informal 

Description 
Combined 
Analysis Who 

is expected to do 
What When 

On the basis of 
which 

information 
(artefacts) 

Attribute
s studied 

Producing what 
kind of results 

(outputs) 

Comments 
and Known 

Gaps 
Relates 
to Tools 

Interaction 
Point 1 
(IP1) 

Type: Risk analysis 
from SSP 
viewpoints and 
refinement or 
requirements/high
-level design 
PLC Placement: 
Requirements/ 
Conceptual Design 
Phase 
Purpose: early 
validation of SSP 
requirements 
coming from 
Requirements 
stage, identify new 
SSP requirements 
(e.g. according to 
the introduction of 
mitigation 
solutions), check 
feasibility of 
updated set of 
requirements, 
properly feed the 
implementation 
phase, give model-
based support to 
be able to possibly 
trigger a trade-off 
meeting 

Hazard and 
operability (HAZOP) 
analysis. 
Identification of 
hazards and their 
likelihood/severity 
to drive any needed 
changes to 
requirements, 
inform decisions 
regarding design, 
and/or trigger 
further 
specialist/combined 
analyses   

Led by 
City and 
Involvin
g: RGB, 
Trustpor
t, ITI, 
CEA, 
Tecnalia
, 
All4Tec, 
AMT 

Activity: 
HAZOP analysis 
Method: 
Systematically applying 
a series of guidewords 
to each step in a use 
scenario to identify 
potential deviations of 
the system behaviour 
from the design intent 

In the 
Requirements
/ Conceptual 
Design Phase 
after RGB has 
provided a 
preliminary 
description of 
the system 
and its 
requirements 

Use scenarios, 
requirements, and 
system description 
provided by RGB 

Sa, Se, Pe 

List of 
hazards/feared 
events and 
potentially changes 
to system 
requirements/design
, and/or triggers of 
further 
specialist/combined 
analyses 

Trial of the 
HAZOP 
analysis was 
limited to the 
specific use 
scenario(s) 
chosen 

  

Hazard analysis and 
risk assessment 
(HARA) and Threat 
analysis and risk 
assessment (TARA). 
To identify threats 
and attacks that 
potentially lead to 
hazards and perform 
a risk assessment 
based on the HAZOP 
analysis and design 
models, asset 
identification is 
performed and used 
to automatically 
derive threats and 
potential attack 
scenarios that are 
later assessed 

Led by 
AMT but 
involvin
g UC2 
partners 

Activity: 
HARA and TARA 
Method: 
Partners' HAZOP 
analysis on Process 
view is imported into 
medini analyze; 
TOFCuff system design 
modelled in medini via 
SysML. This model is 
used to identify assets 
and their security 
attributes to 
automatically derive 
potential threats by 
applying STRIDE 
categories. Threats are 
assessed and 
treatments defined. 
From the HAZOP, 
attacks can be derived 
that are linked to 
corresponding threats.  

In the 
Requirements
/ Conceptual 
Design Phase 
when RGB has 
provided a 
preliminary 
design of the 
system and its 
requirements, 
and after the 
HAZOP 
analysis 

System 
specification from 
RGB and output of 
the HAZOP 
analysis 
performed on a 
process level 

Sa, Se 

A list of hazards, a 
collection of threats 
and attacks that are 
related in a cause 
and effect 
relationship, a risk 
assessment and 
treatment on the 
threat level 

  Medini 
analyze 

Fault tree analysis All4Tec, 
Intecs, 

Activity: 
Fault-tree analysis 

In the 
Requirements

Use scenarios, 
requirements, and Sa, Se, Pe Critical paths that 

can lead to patient   Safety 
Architect, 
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and 
Tecnalia 

(FTA) 
Method: 
Creating fault tree 
using feared events 
identified in HAZOP. 
the FT is analysed for 
fault propagation, 
critical paths, etc. and 
further analysed using 
Tecnalia's concept-
aware analysis tool to 
identify triggers of co-
engineering meetings 
and reports on 
evolution 

/ Conceptual 
Design Phase 
and after the 
HAZOP 
analysis 

system description 
provided by RGB 
along with the 
feared events 
identified in the 
HAZOP analysis 

harm. To inform 
mitigation solutions 
which can change 
system requirements 
and design. Also 
highlights important 
test cases (useful for 
IP2) and potential 
conflicts to be 
checked at later 
stages. 

Cyber 
Architect, 
CHESS, 
and 
Concept-
aware 
analysis 
tool  

Authentication 
trade-off analysis: 
clarify trade-offs that 
arise from a novel 
security requirement 
by describing the risk 
associated with each 
alternative design 
solution, to support 
rational choice of an 
authentication 
method 

Trustpor
t, City 
and RGB 

Activity: 
Trade-off analysis 
Method: 
authentication 
methods are described 
from different 
viewpoints for pre-
selection; analysis then 
extended via 
dependency diagrams 
and comparative 
tables, and potentially 
to quantitative analysis. 

In the 
Requirements
/ Conceptual 
Design Phase - 
triggered by 
the HAZOP 
analysis 

Requirements and 
system description 
provided by RGB, 
as well as 
literature 
describing 
authentication 
methods and their 
effectiveness in 
various contexts 

Sa, Se, Pe 

Description of the 
risk associated with 
each alternative 
authentication 
method from a 
variety of viewpoints 
(safety, security, 
performance, 
usability, cost, etc.) 
so that designers can 
make informed 
decisions 

    

Interaction 
Point 2 (IP2) 

Type: Detailed 
specification of 
testing and 
verification 
activities 
 
PLC Placement: 
Testing/Verificatio
n Phase 
 
Purpose: To 
produce a 
verification plan 

Static code analysis, 
To verify the 
absence of 
undefined 
behaviours which 
lead to potential 
safety risks and 
security 
vulnerabilities. 

CEA 

Activity: 
Static code analysis 
Method: 
Static code analysis to 
guarantee, through 
formal proofs, that the 
C source code complies 
with the initial abstract 
specifications 

In the Testing/ 
Verification 
Phase and 
after the code 
and 
traceability 
information is 
provided by 
RGB 

C code, as well as 
traceability 
information 
linking code items 
and low-level code 
properties to the 
high-level system 
requirements (all 
provided by RGB) 

Sa, Sec, Pe 

Success/Failure 
documenting 
potential conflicts 
arising from 
implementation, and 
thus also changes 
decided to resolve 
any conflicts.  

Scope is 
defined by 
RGB, 
identifying 
target parts of 
code. 

Frama-C 

Preliminary 
verification to test 
robustness of the BP 
control algorithm, 

RGB, 
BUT, ITI 

Activity: 
System verification of 
BP control algorithm 
Method: 

In the 
Testing/Verific
ation Phase. 

Medical 
consultations by 
BUT with partner 
medical centre in 

Sa 

Success/Failures of 
the control 
algorithm, which 
may trigger further 

Initially limited 
to control of 
blood 
pressure, as in 

A2K 
testing 
platform, 
patient 
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that adequately 
covers the SSP 
requirements for 
the new device 
 
Note: a subset of 
the verification 
activities will be 
within the AQUAS 
timeframe 

especially to 
extremes in the 
patient sensitivity 
spectrum in 
preparation for 
clinical trial, and to 
demonstrate the 
functionality and use 
of the testing 
platform for future 
testing phases 

Monte Carlo generation 
of different patient 
characteristics to test 
whether the control 
algorithm achieves 
given patient 
parameter targets. 
Noise/ perturbations 
applied to test 
robustness of the 
algorithm.  

Currently 
underway 

the Czech 
Republic to inform 
realistic and 
clinically 
meaningful 
parameters of 
patient sensitivity 

developmental 
improvements. Also, 
expected outputs 
include: the range of 
patient parameters 
for which the 
algorithm is 
expected to 
successfully operate; 
information 
regarding the 
functionality of the 
testing platform for 
future testing.  

current 
prototype and 
patient model. 
Testing 
concepts later 
applied to 
testing 
neuromuscula
r transmission 
control. 

model 
defined in 
C-code, 
and test 
hardware:
arm 
simulator, 
monitor, 
infusion 
pump 
tree, and 
BP control 
algorithm 
prototype 

Definition of test 
plans : define a set 
of test cases that 
address the various 
viewpoints (SSP and 
usability) and are 
traceable to the 
system requirements 
in order to verify the 
system. 

RGB, 
BUT, 
City, 
Trustpor
t, 
All4Tec, 
Tecnalia 

Activity: 
System verification of 
the BP control 
algorithm 
Method: 
Each specialist defines 
test cases that address 
their specific 
viewpoint/specialty 
(e.g.: City re human 
factors exceptions, 
Trustport re security 
requirements, Tecnalia 
re requirements from 
medical standards, 
All4Tec re critical paths 
identified in the FTA in 
IP1, etc.). A sufficient, 
feasible test case plan 
is assembled that 
avoids duplications 

In the Testing/ 
Verification 
Phase  

System 
requirements 
provided by RGB, 
mitigation 
solutions 
introduced into 
the system design, 
and critical paths 
identified in the 
FTA in IP1 

Sa, Sec, Pe 

Sufficient, feasible 
and efficient set of 
test cases that is 
traceable to the 
system 
requirements. 

AQUAS testing 
will only 
address 
capabilities of 
existing 
prototype. So, 
parts of the 
test cases 
defined will be 
for use in 
verification 
phases after 
AQUAS on 
complete 
system.  

OpenCert, 
Concept-
aware 
analysis 
tool, A2K 
testing 
platform, 
patient 
model 
defined in 
C, test 
hardware 
(arm 
simulator, 
monitor, 
infusion 
pump 
tree, and 
BP control 
algorithm 
prototype
) 
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Design of assurance 
case 

Tecnalia 
co-
ordinati
ng all 
partners 
involved 
in IP2 

Activity: 
Preparation of 
assurance case 
Method: 
Define how outputs of 
the various analyses 
specified in IP2 serve 
towards the assurance 
case. 

In the Testing/ 
Verification 
Phase. 
Preliminary to 
executing the 
various 
testing/verific
ation activities 
on completed 
systems 

Requirements as 
refined by IP1, 
preliminary specs 
of various 
verification/testin
g activities 

Sa, Sec, Pe 

Indications of 
elements required in 
the various 
verification/testing 
plans. Outline of 
assurance case and 
organization of the 
evidence used to 
support it. 

Within the 
timeframe of 
AQUAS, the 
assurance 
case is 
planned but 
not 
completed; 
but 
contributes to 
establishing a 
sound V&V 
plan 

OpenCert 
and 
Concept-
aware 
analysis 
tool 

Further IPs      most likely outside AQUAS timescale          



 

5.3 IP Plan for the Industrial Drive Use Case (UC4) 
The lifecycle applied is a standard V-cycle as shown in Figure 5-2 

 
Figure 5-2: PLC for the Industrial Drive use case, with interaction points 

The planned IPs are shown in Table 5-3. 

 

Implementation

Test results

Validation

Development

Functional Safety
and Security 

Concept

Technical Safety 
and Security 

Concept

System Design

Concept Phase

Integration
and Testing

Safety
Security

Performance

CA1

CA2

CA3



 

Table 5-3: Interaction Points of Industrial Drive use case. 

Interaction 
Point 

Identifier 

Combined 
Analysis 
Identifier 

Interaction Point 
Informal 

Description 

Who is expected to 
do What 

When On the basis 
of which 

information 
(artefacts) 

Attributes 
studied 

Background 
Info 

Producing what 
kind of results 

(outputs) 

Relates 
to Tools 

Interaction 
Point 1 
(IP1) 

Combined 
Analysis 1 
(CA1) 

Type: Simulation-
based system 
assessment 
PLC Placement: 
Concept Phase 
Purpose: Validation 
of current set of 
Sa/Se/Pe 
requirements against 
the actual system 
design. 
Activities: Modeling 
and simulation based 
on the current system 
description, followed 
by validation of the 
actual safety, 
security, performance 
requirements. Results 
are recommendations 
for 
requirements/system 
design for trade-off 
decisions. 

CITY Activity: 
Modeling and 
simulation of the 
current system 
design information 
for validating the 
current set of 
requirements 
Method: 
Moebius SAN 
modeling and 
simulation 

In the 
Concept 
Phase 
when 
the 
interfer
ence 
analysis 
is 
finished 

D2.2.4 
Demonstrator 
Architecture, 
SaR, SeR, PeR 
from 
interference 
analysis 

Sa, Se, Pe D2.1.4 Domain 
Environment, 
"System 
Architecture - 
Additional 
Information.docx" 
(Additional Inputs 
for Partners in the 
Concept Phase).  

Recommendations 
on 
requirements/system 
design (they are e.g. 
based on the system 
reliability results 
from simulation with 
Moebius) - this 
information is used 
for trade-off 
decisions. 
[table, prose] 

Moebius 
(Stochastic 
Automata 
Networks) 

Interaction 
Point 2 
(IP2) 

Combined 
Analysis 2 
(CA2) 

Type: Simulation-
based system 
assessment 
PLC Placement: 
Design Phase 
Purpose: 
Safety/Security 
analysis 
Activities: Modeling 

CITY/ 
SAG 

Activity: 
The implications of 
security on safety 
are analyzed by 
simulating attacks 
on several attack 
interfaces in the 
design such as: 
Forged messages 

Design 
Phase 

D2.2.4 
Demonstrator 
Architecture, 
D2.3.4, SaR, SeR, 
PeR from 
interference 
analysis 
(Concept Phase) 

Sa, Se D2.1.4 Domain 
Environment, 
"System 
Architecture - 
Additional 
Information.docx" 
(Additional Inputs 
for Partners in the 

Recommendations 
on the system design 
on how safe and 
secure the system is 
based on the current 
design decisions 
taken 
[tables, prose] 

Moebius 
(Stochastic 
Automata 
Networks) 
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and simulation based 
on the current system 
description 

on the Ethernet 
between Motor 
Control Platform 
and Remote 
Control Application 
workstation 
2. Forged messages 
on the links 
between Motor 
Control Platform 
and Motor Power 
Board 
Method: 
Moebius SAN 
modeling and 
simulation 

Concept Phase), 
D2.2.4, D2.3.4 

[system reliability, 
availability, etc.] 

  Combined 
Analysis 3 
(CA3) 

Type: Simulation-
based system 
assessment 
PLC Placement: 
Design Phase 
Purpose: 
Security/Performance 
analysis 
Activities: Modeling 
and simulation based 
on the current system 
description 

TP/MTTP Activity: 
Security 
recommendations 
from TP's SSDLC are 
taken into account 
for modeling the 
system in TTool 
(MTTP). Different 
security algorithms 
for confidentiality 
(AES) are tried out 
and the 
performance of the 
system is checked. 
Method: 
Modeling and 
simulation with 
TTool/SSDLC 

Design 
Phase 

D2.2.4 
Demonstrator 
Architecture, 
D2.3.4, SaR, SeR, 
PeR from 
interference 
analysis, 
Interference 
analysis 
database from 
Concept Phase 

Se, Pe D2.1.4 Domain 
Environment, 
"System 
Architecture - 
Additional 
Information.docx" 
(Additional Inputs 
for Partners in the 
Concept Phase), 
D2.2.4, D2.3.4 

Recommendations 
on the system design 
on performance for 
different security 
measures. 

TTool, 
SSDLC 

Interaction 
Point 3 
(IP3) 

most 
likely out 
of scope 

 
PLC Placement: 
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for 
AQUAS 

Development 
Phase 

Interaction 
Point 4 
(IP4) 

most 
likely out 
of scope 
for 
AQUAS 

 
PLC Placement: 
Integration and 
Testing Phase 

                



 

5.4 IP Plan for the Space Multicore Architectures Use Case (UC5) 
 

The planned IPs for this use case are shown in Table 5-4. 

 

 



 

Table 5-4 Interaction Points of Space use case. 

Interaction 
Point 

Identifier 

Combined 
Analysis 

Identifier 
Interaction Point 

Informal Description Who 
is expected to do 

What When 
On the basis of which 

information (artefacts) 

Attribut
es 

studied 

Backg
round 
Info 

Producing what kind of 
results (outputs) 

Relates to 
Tools 

IP_Cph_1  
(IP1) 

Combined 
Analysis 1 
(CA1) 

PLC Placement: Concept 
Phase (selection of the 
methodology has to be 
done in the concept 
phase) 
Purpose: 
Methodology to develop 
safe and secure system 
software by applying 
formal methods. 
Activities: Application of 
formal methods to 
development of System 
Software (e.g. OS kernel)  

HSRM 

Activity: 
Discuss about  
- safety/security 
integrity levels 
achievable with or 
without formal 
methods 
- impact of formal 
methods use on 
performance 
- impact of formal 
methods use on 
development effort 
- tradeoff between 
application of 
formal methods vs. 
rigorous 
testing/run-time 
checking 
Method: 
Formal verification 

After 
Requirements 
baseline and 
before 
architecture 
baseline. 

* Set of system software 
functional requirements 
(derived from use case 
application functional 
model) 
* Set of system software 
timing requirements 
(derived from use case 
application timing 
model) 
* Set of system software 
security requirements 
(based on ESA 
requirements and/or 
best practices in related 
domains, e.g. avionics) 

Sa, Se, 
Pe 

D2.1.5  

ARTIFACT 1: 
    name: report of affected 
modules (input to system 
architecture model) 
     input to IP: IP_Dsph_1 
ARTIFACT 2:  
    name: verified source code 
with verification conditions 
and proofs. 
    input to IP: IP_Dvph_1 / 
IP_Dsph_1. 
ARTIFACT 3: 
     name:  unverifiable source 
code with appropriate test 
cases 
    input to IP: IP_Dvph_1 / 
IP_Dsph_1. 

(ESA) space 
worthiness 
certification 
requirements 
expert 
Security 
Engineer 
expert 
Safety 
Engineer 
expert 
(SPARK) 
Formal 
Methods 
expert 
System 
software 
expert 

IP_Dsph_1 
(IP2) 

Combined 
Analysis 2 
(CA2) 

PLC Placement: Design 
Phase 
Purpose:identify 
interferences due to 
safety-security barriers in 
the architecture. 
Activities: Once CHESS 
model has been 
enhanced with safety-
security barriers, a co-
engineering meeting for 
a combined safety-
security analysis is held. 

INTECS 
ALL4TEC 
TECNALI
A 

Activity: 
to take decision for 
the 
implementation of 
safety or security 
barrier in the 
architecture 
Method: 
Co-engineering 
meeting 

On every 
design iteration 
(after an 
architecture 
baseline) 

*System "enhanced" 
architecture (with safety-
security barriers) 
* Set of security 
requirements 
* Set of safety 
requirements 
* Set of functional 
requirements 

Sa, Se D2.1.5   

ARTIFACT 1: 
      name:Added or changed 
requirements 
      affected IP:: IP_Cph_2  
ARTIFACT 2: 
     name: Safety/Security 
trees 
     input to possible IP in 
validation phase 
 
ARTIFACT 3: 
     name:  (HTML) formal 
concept analysis 
      input to IP:: TBD 

System 
architecture: 
CHESS 
Safety 
analysis: 
safety 
engineer with 
SafetyArchite
ct 
Security 
analysis: 
security 
engineer with 
Cyber 
Architect 
Safety-
Security 
combined 
analysis: 
Tecnalia 
concept-
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aware tool 
(prototype) 

IP_DsDvph_1 
(IP3) 

Combined 
Analysis 3 
(CA3) 

PLC Placement:Design 
and implementation 
phases. 
Purpose:find timing 
interference on multi-
core systems 
Activities: Two-step 
timing interference 
characterization 

TRT 

Activity:Two-step 
timing interference 
characterization 
(architecture & 
application) 
 
Method: 
characterization 
methodology 

Iterate until 
convergence on 
safefy / security 
/ performance 
requirements 
are met. 

* Functional architecture 
description 
* Hardware architecture 
description 
*  set of safety 
requirements 
* set of security 
requirements 
* set of performance 
requirements 

Sa, Se, 
Pe 

D2.1.5   TBD 

All4TEC  - 
SafetyArchite
ct 
MTTP - Ttool 
TRT - 
Time4Sys/Te
mpo 

IP_DsDvph_2 
(IP4) 

Combined 
Analysis 4 
(CA4) 

PLC Placement:Between 
design and 
implementation. 
Purpose: Safe 
Scheduling, Safe Code 
generation and 
performance analysis 
Activities: Generation of 
threaded code modules 
and analysis of timing 
and scheduling 
performance/safety 
aspects of the overall 
system. Analysis of 
generated code for 
concurrency and memory 
safety. 

ITI 
BUT 
ABSINT 

Activity: 
Response time 
analysis & 
schedulability. 
Analysis of code 
safety and memory 
usage including 
shared resources. 
 
Method: safe code 
generation 

  

System hardware 
components description 
(platform model) 
High level description of 
application software 
(tasks, flows, precedence 
relations) 
Code modules for each 
task. 
Deployment model (task 
priorities, activation 
patterns, use of shared 
resources, 
software/hardware 
allocation constraints) 

Sa, Pe D2.1.5   

ARTIFACT 1: 
     name:  threaded code 
modules with enhanced 
safety. 
      input to IP: IP_Dvph_1  
ARTIFACT 2: 
     name:  performance 
reports (latencies, 
throughputs) 
      input to IP: IP_Dsph_1 (e.g 
if WCET exceed design 
constraints)  
ARTIFACT 3: 
     name: Sensitivity results – 
How “close” system is to 
becoming un-schedulable. 
  input to IP: IP_Dsph_1  

A2K – 
Art2kitekt / 
TimingProfiler 
(provides 
execution 
times) 
BUT 
ANaConDA & 
Perun (OSLC 
Interface) for 
static code 
analysis. 

IP_Dvph_1 
(IP5) 

could be in 
the scope 
for AQUAS 

PLC Placement: 
Implementation phase. 
Purpose: New code 
implementation analysis 

                

IP_VVph_1  
(IP6) 

most likely 
in scope for 
AQUAS 

PLC Placement: 
Verification and 
validation phases. 
Purpose: Verification of 
design expected results 

                

IP_Cph_2  
(IP7) 

could be in 
the scope 
for AQUAS 

PLC Placement: Concept 
phase 
Purpose: Requirements 
Joint Review 

                



 

 

6 Conclusions 
This document is delivered at month 24 of the project. Its contents are the basis for the final stage of 
the AQUAS methodology work. The AQUAS use cases have applied combined analyses on parts of their 
demonstrator development processes; these examples, documented here, will help all project 
partners in the final stage of work in the methodology work package. This final stage will involve: 

• further application of combined analyses and new interaction points, so as to validate and 
refine the AQUAS approach; and  

• reporting of the results so as to deliver methodology proposals, which will be 

o based on combined analyses and interaction points; 

o supported by the tool developments performed in AQUAS; 

o suitable for adoption by companies and for consideration by standard organisations.  

Regarding the potential for broader adoption and standardisation, we note that the 2018 version of 
standard ISO 26262 (Road vehicles — Functional safety), in Part 2 (Management of functional safety) 
mandates that as part of "safety culture":  

5.4.2.3 The organization shall institute and maintain effective communication channels 
between functional safety, cybersecurity, and other disciplines that are related to the 
achievement of functional safety. 

EXAMPLE 1 Communication channels between functional safety and cybersecurity in order to 
exchange relevant information (e.g. in the case it is identified that a cybersecurity issue might 
violate a safety goal or a safety requirement, or in the case a cybersecurity requirement might 
compete with a safety requirement)." 

AQUAS directly addresses the need identified in this standard, but it also offers concrete solutions. An 
organisation trying to satisfy the above "normative" statements in ISO 26262 will find in the 
"informative" annex E of the standard only a basic list of some of the goals for such communication. 
Instead, the present document describes a set of concrete approaches at the technical level, with 
preliminary validation of their practical applicability and effectiveness. A single project like AQUAS 
could never deliver complete assessment of a set of complex methods, which is only possible through 
larger-scale use. But the reports in this document, and the further experience that will be accumulated 
in the remaining part of AQUAS, will offer evidence for partners and other users to decide on adopting 
or piloting both the individual AQUAS techniques and the AQUAS approach. 

Chapter 4, which describes the techniques for "combined analyses", documents that the trials of these 
techniques have been successful: no major obstacles have been encountered in applying them; some 
lessons have been learned about how to apply them; these techniques have helped to detect 
interdependencies between the SSP requirements and the design decisions driven by them, to trace 
possible hazards and their causes, etc. The examples documented here are limited in scope, for the 
sake of readability, but most of them are already being extended to address broader subsets of the 
demonstrator systems.  

Apart from the combined analyses, the present document has added detail to the Interaction Point 
concept as developed so far. In particular: 

• Chapter 2 gives a top-down view of the intended AQUAS improvements to the product life cycle 
(PLC) and the role played by interaction points. This includes the Conceptual Model of the AQUAS 
product life cycle, which will help interaction within the project, with a potential for possible 
adoption in standardization. 
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• The outline of tooling requirements for interaction points in Chapter 3 supports the work on WP4, 
Design Tooling. 

In the remaining time of the project, the AQUAS Use Cases will move on to the next interaction points 
in their planning, and thus feed their experience back to improve these tooling requirements and 
guidance about managing co-engineering via interaction points. 

Last, work on this deliverable has contributed to the planning of both the individual partners' activities 
and the joint use case activity that will support the methodology work in the remaining part of the 
AQUAS project. These plans are summarized in the "Further Developments" subsections in Chapter 4 
"Methods for Combined Analyses" and in Chapter 5 "Interaction Point Planning in the Use Cases". As 
each use case proceeds through its PLC to subsequent interaction points, this will help AQUAS to 
further assess not just the effectiveness of analysis techniques but also the way that interaction points 
should be planned (their placements and the analyses they will include). The lessons learned will be 
fed into the final reporting from WP3. 
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7 Glossary and abbreviations 
Table 7-1: AQUAS-specific terms and AQUAS-specific word uses 

Combined 
analysis 

An analysis that combines different viewpoints, e.g. safety and security. Equivalent 
to Interference analysis 

Co-
engineering 

AQUAS usage: Managing the interactions between system qualities (key ones in 
AQUAS being safety, security, performance, but also usability). In particular, 
orchestrating the manual and automatic trade-offs within and across stages of the 
product lifecycle.  

Focus area see "silo" 

Interaction 
Point 

A step in a PLC consisting of running combined analyses from the viewpoints of two 
or more properties (e.g. security, safety etc), through some mix of automated and 
human analyses, holding discussions as needed to resolve problems arising, possibly 
iterating analyses and reaching trade-off decisions. Also, the point in the PLC at 
which one such activity happens 

Interference 
analysis 

Any analysis that addresses more than one non-functional requirements. Also used 
in UC4 for a preliminary analysis intended to  

Silo (or 
"focus area") 

A set of specialist activities and specialists , e.g. a security team in a development 
project, and their activities.  

Note: In AQUAS, "silo" is used without the negative connotations it may have in 
business literature (dysfunctional teams, unable to communicate effectively), and 
does not assume complete lack of communication, but rather communication 
organised through "interaction points. However, "focus area" has been introduced 
for contexts where "silo" may be misinterpreted 

Work 
product 

AQUAS usage: any item produced during the lifecycle; artefact that is part of a 
system or used in its PLC, like design documentation or test plans. 

 
Table 7-2: Abbreviations used in the text 

ATM Air Traffic Management 

CE Co-engineering 

FMVEA Failure Modes, Vulnerabilities and Effect Analysis 

FT, FTA Fault Tree, Fault Tree Analysis 

HARA Hazard Analysis and Risk Assessment 

HAZOP  HAZard and OPerability analysis 

HW Hardware 

IP Interaction point 

MITM Man In The Middle (attack) 

PLC Product lifecycle 

SAE Society of Automotive Engineers 

SAN Stochastic Activity Network 

SSP Safety, security and performance 

SW Software 
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TARA Threat Analysis and Risk Assessment 
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List of Annexes 
Contain extended details or confidential information related to the examples presented in Chapter 4.  

Annex 4-1: HAZOP Table (Medical Use Case) 
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Annex 4-9: Design-Stage Model (Space Use Case) 


